Advertisement

Biokerosene pp 435-473 | Cite as

Conversion Routes from Biomass to Biokerosene

  • Ulf Neuling
  • Martin Kaltschmitt
Chapter

Abstract

The goal of this paper is to give an overview of the current possibilities to produce biokerosene from different types of biomass. Therefore different existing processes are characterized in relation to the useable feedstock (i.e. vegetable oil, starch, sugar, lignocellulose) and the type of conversion process (i.e. mechanical, biochemical, thermo-chemical or physico-chemical). In this context possible intermediate products as well as the final products are defined. Afterwards the six most advanced conversion pathways are described in more detail. This includes the hydroprocessed esters and fatty acids (HEFA) route, the direct sugar to hydrocarbons (DSHC) route, the alcohol-to-jet (AtJ) route, the biogas-to-liquid (Bio-GtL) route, the biomass-to-liquid (BtL) route as well as the hydrotreated depolymerized cellulosic jet (HDCJ) route. For each route the possible feedstock and the technical specifications are addressed. Finally a short outlook for the described processes as well as a brief assessment is given.

References

  1. [1]
    Department of Economic and Social Affairs (2004) World population to 2300, United Nations ST/ESA/SER.A/236Google Scholar
  2. [2]
    ExxonMobil (2016) The outlok for energy: A view to 2040Google Scholar
  3. [3]
    Timilsina GR (2013) Biofuels in the long-run global energy supply mix for transportation. Philos T Roy Soc A 372(2006):20120323.  https://doi.org/10.1098/rsta.2012.0323 CrossRefGoogle Scholar
  4. [4]
    Månsson A, Sanches-Pereira A, Hermann S (2014) Biofuels for road transport. Analysing evolving supply chains in Sweden from an energy security perspective. Appl Energ:349–357.  https://doi.org/10.1016/j.apenergy.2014.01.098 CrossRefGoogle Scholar
  5. [5]
    Linares P, Pérez-Arriaga IJ (2013) A sustainable framework for biofuels in Europe. Energ Policy 52:166–169.  https://doi.org/10.1016/j.enpol.2012.10.008 CrossRefGoogle Scholar
  6. [6]
    Awudu I, Zhang J (2012) Uncertainties and sustainability concepts in biofuel supply chain management. A review. Renew Sust Energ Rev 16(2):1359–1368.  https://doi.org/10.1016/j.rser.2011.10.016 CrossRefGoogle Scholar
  7. [7]
    IPCC (2015) Climate change 2014. Synthesis report. |In: Core Writing Team, Pachauri RK, Meyer LA (eds) Intergovernmental panel on climate change. IPCC, GenevaGoogle Scholar
  8. [8]
    Sims R (2007) Good practice guidelines. Bioenergy project development and biomass supply. International Energy AgencyGoogle Scholar
  9. [9]
    Kaltschmitt M, Hartmann H, Hofbauer H (2016) Energie aus Biomasse. Grundlagen, Techniken und Verfahren, 3rd edn. Springer, BerlinGoogle Scholar
  10. [10]
    Faostat FA (2015) Statistical databases http://www.fao.org/faostat/Accessed 1 Mar 2016
  11. [11]
    Department of Environment, Food and Rural Affairs (2008) Waste wood as a biomass fuel. Market information report. LondonGoogle Scholar
  12. [12]
    Merrild H, Christensen TH (2009) Recycling of wood for particle board production. Accounting of greenhouse gases and global warming contributions. Waste Manage Res 27(8):781–788.  https://doi.org/10.1177/0734242X09349418 CrossRefGoogle Scholar
  13. [13]
    Sims REH, Hastings A, Schlamadinger B, Taylor G, Smith P (2006) Energy crops. Current status and future prospects. Global Change Biol 12(11):2054–2076.  https://doi.org/10.1111/j.1365-2486.2006.01163.x CrossRefGoogle Scholar
  14. [14]
    Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329(5993):790–792.  https://doi.org/10.1126/science.1189268 CrossRefGoogle Scholar
  15. [15]
    Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40(12):3693–3700.  https://doi.org/10.1016/j.procbio.2005.04.006 CrossRefGoogle Scholar
  16. [16]
    Zimmer Y (2010) Competitiveness of rapeseed, soybeans and palm oil. J Oilseed Brassica 1(2):84–90Google Scholar
  17. [17]
    Wahl N, Hildebrandt T, Moser C, Lüdeke-Freund F, Averdunk K, Bailis R, Barua K, Burritt R, Groeneveld J, Klein A-M, Kügemann M, Walmsley D, Schaltegger S, Zelt T (2012) Insights into Jatropha Projects Worldwide. Key Facts & Figures from a Global Survey. Center for Sustainability Managment (CSM), LüneburgGoogle Scholar
  18. [18]
    van Eijck J, Smeets E, Romijn H, Balkema A, Jongshaap R (2010) Jatropha assessment. Agronomy, socio-economic issues, and ecology. Utrecht University; Technical University Eindhoven; Plant Research International, WageningenGoogle Scholar
  19. [19]
    Neuling U, Kaltschmitt M (2014) Conversion routes for production of biokerosene – status and assessment. Biomass Conv Bioref.  https://doi.org/10.1007/s13399-014-0154-2 CrossRefGoogle Scholar
  20. [20]
    Worldwatch Institute (2007) Biofuels for transport. Global potential and implications for sustainable energy and agriculture. Earthscan, London.Google Scholar
  21. [21]
    Fava Neves M, Junqueira Alves Pinto M, Conejero MA, Trombin VG (2011) Food and fuel. The example of Brazil. Wageningen Academic, WageningenCrossRefGoogle Scholar
  22. [22]
    Organisation for Economic Co-Operation and Development (ed) (2015) OECD FAO agricultural outlook 2015–2024, 21st edn. OECD-FAO Agricultural outlook. OECD, Paris.Google Scholar
  23. [23]
    Stephanie S, Malins C (2013) Availability of cellulosic residues and wastes in the EU. ICCTGoogle Scholar
  24. [24]
    Valkenburg C, Walton CW, Thompson BL, Gerber MA, Jones SB, Stevens DJ (2008) Municipal Solid Waste (MSW) to liquid fuels synthesis. Volume 1: availability of feedstock and technology, PNNL-18144. Pacific Northwest National Laboratory [PNNL], RichlandGoogle Scholar
  25. [25]
    American Society for Testing and Materials (2016) Specification for aviation turbine fuel containing synthesized hydrocarbons. ASTM International, West Conshohocken (ASTM D7566)Google Scholar
  26. [26]
    Gormley RJ, Link DD, Baltrus JP, Zandhuis PH (2009) Interactions of jet fuels with nitrile O-rings: petroleum-derived versus synthetic fuels. Energ Fuel 23(2):857–861.  https://doi.org/10.1021/ef8008037 CrossRefGoogle Scholar
  27. [27]
    Robota HJ, Alger JC, Shafer L (2013) Converting algal triglycerides to diesel and HEFA jet fuel fractions. Energ Fuel 27(2):985–996.  https://doi.org/10.1021/ef301977b CrossRefGoogle Scholar
  28. [28]
    Yeh TM, Dickinson JG, Franck A, Linic S, Thompson LT, Savage PE (2013) Hydrothermal catalytic production of fuels and chemicals from aquatic biomass. J Chem Technol Biotechnol 88(1):13–24.  https://doi.org/10.1002/jctb.3933 CrossRefGoogle Scholar
  29. [29]
    Kuchling T, Wollmerstädt H, Endisch M (2013) Hydrierung von Pflanzenölen – Mechanismus und Kinetik. Chemie Ingenieur Technik 85(4):508–511.  https://doi.org/10.1002/cite.201200199 CrossRefGoogle Scholar
  30. [30]
    Tóth C, Kasza T, Kovács S, Baladincz P, Hancsók J (2009) Investigation of catalytic conversion of vegetable oil. 44th International Petroleum Conference, Bratislava, September 2009Google Scholar
  31. [31]
    Myllyoja J, Aalto P, Savolainen P, Purola V-M, Alopaeus V, Grönqvist J Process for the manufacture of diesel range hydrocarbons patent US 8,212,094 B2Google Scholar
  32. [32]
    Kasza T, Hancsók J (2011) Isomerization of paraffin mixtures produced from sunflower oil. Hung J Ind Chem 39(3):363–368.Google Scholar
  33. [33]
    Bertelli C Next steps in biofuel development and deployment March 2011. Austrailian International Airshow and Aerospace & Defence Exposition Avalon 2011,Google Scholar
  34. [34]
    Nikander S (2008) Greenhouse gas and energy intensity of product chain. Case transport biofuel. Masterthesis, Helsinki University of TechnologyGoogle Scholar
  35. [35]
    Pearlson MN (2011) A techno-economic and environmental assessment of hydroprocessed renewable distillate fuels. Master Thesis, Massachusetts Institute of Technology [MIT]Google Scholar
  36. [36]
    Coppola E, Red C JR, Nana S (2014) High rate reactor system patent US 2014/0109465 A1Google Scholar
  37. [37]
    Li L, Coppola E, Rine J, Miller JL, Walker D (2010) Catalytic hydrothermal conversion of triglycerides to non-ester biofuels. Energ Fuel 24(2):1305–1315.  https://doi.org/10.1021/ef901163a CrossRefGoogle Scholar
  38. [38]
    Applied Research Associates, Inc (2014). Biofuels isoconversion process. Applied Research Associates, Inc., Albuquerque http://www.ara.com/fuels/Why-ReadiJet.html Accessed 23 Mar 2014
  39. [39]
    Kröger V (2013) NesteOil – the only way is forward, 15 January 2013. PresentationGoogle Scholar
  40. [40]
    IATA (2013) IATA 2013 report on alternative fuels, IATA, MontrealGoogle Scholar
  41. [41]
    Garcia F (2011) Amyris-total alternative aviation fuel partnership Washington. Caafi General Meeting and Expo 2011,Google Scholar
  42. [42]
    Blommel PG, Cortright RD (2008) Production of conventional liquid fuels from sugars. Virent Energy Systems Inc. http://biofuelstp.eu/viewreport.php?viewid=66. Accessed 26 Mar 2014
  43. [43]
    Bauldreay J Catalytic conversion of sugars to create bio jet fuels – virent/shell. Aireg workshop “technologies of fuel conversion”, 18 June 2012Google Scholar
  44. [44]
    Kania J, Blommel PG, Woods E, Dally B, Lyman W, Cortright RD (2013). Production of distillate fuels from biomass-derived polyoxygenates patent US 2013/0263498 A1Google Scholar
  45. [45]
    Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329(5991):559–562.  https://doi.org/10.1126/science.1187936 CrossRefGoogle Scholar
  46. [46]
    Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41(5):1001–1014.  https://doi.org/10.1016/j.procbio.2005.12.007 CrossRefGoogle Scholar
  47. [47]
    Amyris (2014) Total: Amyris – news – total and Amyris renewable jet fuel ready for use in commercial aviation, Amyris, EmeryvilleGoogle Scholar
  48. [48]
    Stöckel R (2014) Total: aireg meeting. E-MailGoogle Scholar
  49. [49]
    Schmitz N, Henke J, Klepper G (2009) Biokraftstoffe. Eine vergleichende Analyse. FNRGoogle Scholar
  50. [50]
    Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels, Bioprod Bioref 5(1):93–114.  https://doi.org/10.1002/bbb.256 CrossRefGoogle Scholar
  51. [51]
    Griffin DW, Schultz MA (2012) Fuel and chemical products from biomass syngas: a comparison of gas fermentation to thermochemical conversion routes. Environ Prog Sustain 31(2):219–224.  https://doi.org/10.1002/ep.11613 CrossRefGoogle Scholar
  52. [52]
    Dutta A, Talmadge M, Hensley J (2011) Process design and economics for conversion of lignocellulosic biomass to ethanol. Thermochemical pathway by indirect gasification and mixed alcohol synthesis, NREL/TP-5100-51400. National Renewable Energy Laboratory, GoldenGoogle Scholar
  53. [53]
    Wollrab A (2009) Organische Chemie. Eine Einführung für Lehramts- und Nebenfachstudenten, 2009th edn. Springer, BerlinGoogle Scholar
  54. [54]
    Breitmaier E, Jung G, Breitmaier-Jung (2005) Organische Chemie. Grundlagen, Stoffklassen, Reaktionen, Konzepte, Molekülstruktur; zahlreiche Formeln, Tabellen, 5th edn. Thieme, StuttgartGoogle Scholar
  55. [55]
    Hull A (2012) Technology for the production of fully synthetic aviation fuels, diesel and gasoline. Presentation held at the Solakonferansen 2012Google Scholar
  56. [56]
    Weiss KR (2013) Commercialization of a renewable aviation fuel industry. Brasil, Sao Paulo, 28 June 2013 Ethanol Summit 2013Google Scholar
  57. [57]
    Holmgren J (2013) Innovative use of industrial waste gases to produce sustainable fuels & chemicals. Presentation held at the Avalon Air Show 2013 Geelong, 27 February 2013Google Scholar
  58. [58]
    Johnston G (2013) Alcohol to Jet (AtJ). Paris Air Show 2013Google Scholar
  59. [59]
    Fachagentur Nachwachsende Rohstoffe e.V (ed) (2014) Leitfaden Biogasaufbereitung und -einspeisung, 5th edn. Fachagentur für Nachwachsende Rohstoffe, GülzowGoogle Scholar
  60. [60]
    Fachagentur Nachwachsende Rohstoffe e.V (ed) (2013) Leitfaden Biogas. Von der Gewinnung zur Nutzung [Bioenergie], 6th edn. biogas.fnr.de, GülzowGoogle Scholar
  61. [61]
    European Biogas Association EBA (2014) EBA Biogas Report 2014 is published! European Biogas Association, BruxellesGoogle Scholar
  62. [62]
    de Klerk A (2011) Fischer-tropsch refining, 1st edn. Wiley, HobokenCrossRefGoogle Scholar
  63. [63]
    Häussinger P, Lohmüller R, Watson AM (2000) Hydrogen, 3. Purification. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, WeinheimGoogle Scholar
  64. [64]
    Hiller H, Reimert R, Stönner H-M (2011) Gas production, 1. Introduction. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, WeinheimGoogle Scholar
  65. [65]
    Fischer F, Tropsch H (1923) The preparation of synthetic oil mixtures (synthol) from carbon monoxide and hydrogen. Brennstoff-Chem 4:276–285Google Scholar
  66. [66]
    Janiak C, Klapötke TM, Riedel E, Meyer HJ (2003) Moderne anorganische Chemie. de Gruyter, BerlinGoogle Scholar
  67. [67]
    Hamelinck CN, Faaij AP (2002) Future prospects for production of methanol and hydrogen from biomass. J Power Sources 111(1):1–22.  https://doi.org/10.1016/S0378-7753(02)00220-3 CrossRefGoogle Scholar
  68. [68]
    Steynberg A, Dry M (2004) Fischer-tropsch technology. Stud Surf Sci Catal 152:64–195CrossRefGoogle Scholar
  69. [69]
    Sie ST, Krishna R (1999) Fundamentals and selection of advanced Fischer‐tropsch reactors. Appl Catal A-Gen 186(1):55–70CrossRefGoogle Scholar
  70. [70]
    de Deugd RM, Kapteijn F, Moulijn JA (2003) Trends in Fischer–tropsch reactor technology. Opportunities for structured reactors. Top Catal 26(1–4):29–39.  https://doi.org/10.1023/B:TOCA.0000012985.60691.67 CrossRefGoogle Scholar
  71. [71]
    Ehrfeld W (1996) Microsystem technology for chemical and biological microreactors. Papers of the workshop on microsystems technology, Mainz, 20–21 February 1995. DECHEMA monographs, vol. 132. VCH, WeinheimGoogle Scholar
  72. [72]
    Walter S, Frischmann G, Broucek R, Bergeld M, Liauw M (1999) Fluiddynamische Aspekte in Mikrostrukturreaktoren. Chemie Ingenieur Technik 71:447–455CrossRefGoogle Scholar
  73. [73]
    de Klerk A Fischer-tropsch jet fuel process patent US 2010/0108568 A1, 6 May 2010Google Scholar
  74. [74]
    Oil & Gas Journal: Sasol to establish GTL plant in UzbekistanGoogle Scholar
  75. [75]
    Shell Global: The world’s largest gas-to-liquids plant is now fully onlineGoogle Scholar
  76. [76]
    Swanson RM (2009) Techno-economic analysis of biomass-to-liquids production based on gasification. Master thesis, Iowa State UniversityGoogle Scholar
  77. [77]
    Stevens DJ (2001) Hot gas conditioning: recent progress with larger-scale biomass gasification systems. Update and summary of recent progressGoogle Scholar
  78. [78]
    Fulcrum BioEnergy (2014) Sierra bioFuels plant. Fulcrum BioEnergy, PleasantonGoogle Scholar
  79. [79]
    Media B Green Car Congress: KiOR halts cellulosic fuels production at Columbus in Q1 to optimize production; need for R&D to boost yield and cut costsGoogle Scholar
  80. [80]
    KiOR (2014): KiOR, Inc. – Production facilities. http://www.kior.com/content/?s=6&s2=56&p=56&t=Production-Facilities. Accessed 11 Jun 2014
  81. [81]
    Biofuels Digest (2015) Judge allows KiOR Columbus plant to sell off pieces with REG and chipmakers first up. http://www.biofuelsdigest.com/bdigest/2015/10/05/judge-allows-kior-columbis-plant-to-sell-off-piece-with-reg-and-chipmakers-first-up/. Accessed 29 Feb 2016
  82. [82]
    CAAFI (2010) Fuel readiness level. http://www.caafi.org/information/pdf/FRL_CAAFI_Jan_2010_V16.pdf. Accessed 2 Mar 2016

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Hamburg University of TechnologyInstitute of Environmental Technology and Energy EconomicsHamburgGermany

Personalised recommendations