Biokerosene pp 375-402 | Cite as

Direct and Indirect Land Use Change

  • Katharina PlassmannEmail author


The conversion of (semi-)natural vegetation to other land uses is related to several environmental problems, including climate change and the loss of biodiversity and ecosystem services. Land use change (LUC) is a significant source of greenhouse gas emissions, and preventing the conversion of forests, peat lands and other ecosystems is an important climate mitigation opportunity. If bioenergy feedstocks are cultivated on newly converted land or displace previous food production, then GHG emissions related to LUC can reduce or even negate the climate mitigation potential of bioenergy products. Efforts to reduce LUC are ongoing via various public, private, voluntary and regulatory approaches at local, national and global scales. Although positive trends are evident, further efforts are needed to reduce LUC against a background of growing land use competition. Trade-offs exist between food security, development and environmental targets, and any measures taken need to consider local and global effects, direct and indirect impacts, leakage effects, and environmental and socioeconomic consequences. The impact of bioenergy production on global land use competition can be reduced by promoting feedstocks that do not compete with food or feed crops for land.


  1. [1]
    MEA (2005) Ecosystems and human well-being: biodiversity synthesis. Millennium ecosystem assessment. World Resources Institute, WashingtonGoogle Scholar
  2. [2]
    IPCC (2006) 2006 IPCC guidelines for National Greenhouse Gas Inventories. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Prepared by the National Greenhouse Gas Inventories Programme. IGES, JapanGoogle Scholar
  3. [3]
    Nkonya E, Anderson W, Kato E, Koo J, Mirzabaev A, von Braun J, Meyer S (2016) Global cost of degradation. In: Nkonya E, Mirzabaev A, von Braun J (eds) Economics of land degradation and improvement – a global assessment for sustainable development. Springer International, SwitzerlandCrossRefGoogle Scholar
  4. [4]
    Smith P, House JI, Bustamante M, Sobocka J, Harper R, Pan G, West P, Clark J, Adhya T, Rumpel C, Paustian K, Kuikman P, Cotrufo MF, Elliott JA, McDowell R, Griffiths RI, Asakawa S, Bondeau A, Jain AK, Meersmans J, Pugh TAM (2016) Global change pressures on soils from land use and management. Glob Change Biol 22:1008–1028CrossRefGoogle Scholar
  5. [5]
    Keenan RJ, Reams RA, Achard F, de Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecol Manag 352:9–20CrossRefGoogle Scholar
  6. [6]
    Smith P, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, Haberl H, Harper R, House J, Jafari M, Masera O, Mbow C, Ravindranath NH, Rice CW, Robledo Abad C, Romanovskaya A, Sperling F, Tubiello F (2014) Agriculture, Forestry and Other Land Use (AFOLU). In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  7. [7]
    Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall D (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefGoogle Scholar
  8. [8]
    de Chazal J, Rounsevell MDA (2009) Land-use and climate change within assessments of biodiversity change: a review. Global Environ Chang 19:306–315CrossRefGoogle Scholar
  9. [9]
    Tubiello FN, Salvatore M, Ferrara AF, House J, Federici S, Rossi S, Biancalani R, Condor Golec RD, Jacobs H, Flammini A, Prosperi P, Cardenas-Galindo P, Schmidhuber J, Sanz Sanchez MJ, Srivastava N, Smith P (2015) The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob Change Biol 21:2655–2660CrossRefGoogle Scholar
  10. [10]
    Stoate C, Báldi A, Beja P, Boatman ND, Herzon I, van Doorn A, de Snoo GR, Rakosy L, Ramwell C (2009) Ecological impacts of early 21st century agricultural change in Europe – a review. J Environ Manage 91:22–46CrossRefGoogle Scholar
  11. [11]
    Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith P (2008) Greenhouse gas mitigation in agriculture. Philos T Roy Soc B 363:789–813CrossRefGoogle Scholar
  12. [12]
    Hosonuma N, Herold M, De Sy V, De Fries RS, Brockhaus M, Verchot L, Angelsen A, Romijn E (2012) An assessment of deforestation and forest degradation drivers in developing countries. Environ Res Lett 7:044009CrossRefGoogle Scholar
  13. [13]
    Kissinger G, Herold M, De Sy V (2012) Drivers of deforestation and forest degradation: a synthesis report for REDD+ policymakers. Lexeme Consulting, VancouverGoogle Scholar
  14. [14]
    Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. PNAS 107:16732–16737CrossRefGoogle Scholar
  15. [15]
    Geist HJ, Lambin EF (2002) Proximate causes and underlying driving forces of tropical deforestation. BioScience 52:143–150CrossRefGoogle Scholar
  16. [16]
    Mayaux P, Pekel J-F, Desclée B, Donnay F, Lupi A, Achard F, Clerici M, Bodart C, Brink A, Nasi R, Belward A (2013) State and evolution of the African rainforests between 1990 and 2010. Philos T Roy Soc B 368:20120300. Accessed March 2016CrossRefGoogle Scholar
  17. [17]
    Salvini G, Herold M, De Sy V, Kissinger G, Brockhaus M, Skutsch M (2014) How countries link REDD+ interventions to drivers in their readiness plans: implications for monitoring systems. Environ Res Lett 9:074004CrossRefGoogle Scholar
  18. [18]
    Henders S, Persson UM, Kastner T (2015) Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environ Res Lett 10:125012CrossRefGoogle Scholar
  19. [19]
    Alexander P, Rounsevell MDA, Dislich C, Dodson JR, Engström K, Moran D (2015) Drivers for global agricultural land use change: the nexus of diet, population, yield and bioenergy. Global Environ Chang 35:138–147CrossRefGoogle Scholar
  20. [20]
    Federici S, Tubiello FN, Salvatore M, Jacobs H, Schmidhuber J (2015) New estimates of CO2 forest emissions and removals: 1990–2015. Forest Ecol Manag 352:89–98CrossRefGoogle Scholar
  21. [21]
    Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012) Carbon emissions from land use and land-cover change. Biogeosciences 9:5125–5142CrossRefGoogle Scholar
  22. [22]
    Tubiello FN, Salvatore M, Condor Golec RD, Ferrara A, Rossi S, Biancalani R, Federici S, Jacobs H, Flammini A (2014) Agriculture, forestry and other land use emissions by sources and removals by sinks. 1990–2011 analysis. FAO Statistics Division, Working Paper Series ESS/14-02. Food and Agriculture Organization of the United Nations (FAO), RomeGoogle Scholar
  23. [23]
    Beuchle R, Grecchi RC, Shimabukuro YE, Seliger R, Eva HD, Sano E, Achard F (2015) Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl Geophys 58:116–127Google Scholar
  24. [24]
    Lapola DM, Martinelli LA, Peres CA, Ometto JPHB, Ferreira ME, Nobre CA, Aguiar APD, Bustamente MMC, Cardoso MF, Costa MH, Joly CA, Leite CC, Moutinho P, Sampaio G, Strassburg BBN, Vieira ICG (2014) pervasive transition of the Brazilian land-use system. Nat Clim Change 4:27–35CrossRefGoogle Scholar
  25. [25]
    Birdsey R, Pan Y, Houghton R (2013) Sustainable landscapes in a world of change: tropical forests, land use and implementation of REDD+: part I. Carbon Manage 4:465–468CrossRefGoogle Scholar
  26. [26]
    TEEB (2010) The economics of ecosystems and biodiversity: mainstreaming the economics of nature: a synthesis of the approach, conclusions and recommendations of TEEB. TEEB, GenevaGoogle Scholar
  27. [27]
    Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice C, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574CrossRefGoogle Scholar
  28. [28]
    TEEB (2015) TEEB for Agriculture, Food: an interim report. United Nations Environment Programme. TEEB, GenevaGoogle Scholar
  29. [29]
    Sloan S, Jenkins CN, Joppa LN, Gaveau DLA, Laurance WF (2014) Remaining natural vegetation in the global biodiversity hotspots. Biol Conserv 177:12–24CrossRefGoogle Scholar
  30. [30]
    Immerzeel DJ, Verweij PA, van der Hilst F, Faaij APC (2014) Biodiversity impacts of bioenergy crop production: a state-of-the-art review. GCB Bioenergy 6:183–209CrossRefGoogle Scholar
  31. [31]
    Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600CrossRefGoogle Scholar
  32. [32]
    Bradshaw CJA, Sodhi NS, Peh KS-H, Brook BW (2007) Global evidence that deforestation amplifies flood risk and severity in the developing world. Glob Change Biol 13:2379–2395CrossRefGoogle Scholar
  33. [33]
    Warren M, Murdiyarso D, Kauffman B (2012) Introduction. In: Murdiyarso D, Kauffman JB, Warren M, Pramova E, Hergoualc’h K (eds) Tropical wetlands for climate change adaptation and mitigation: science and policy imperatives with special reference to Indonesia. Working Paper 91. CIFOR, BogorGoogle Scholar
  34. [34]
    Ferreira ME, Ferreira LG, Miziara F, Soares-Filho BS (2013) Modeling landscape dynamics in the central Brazilian savanna biome: future scenarios and perspectives for conservation. J Land Use Sci 8: 403–421CrossRefGoogle Scholar
  35. [35]
    EC (May 2011) Our life insurance, our natural capital: an EU biodiversity strategy to 2020. European Commission, BrusselsGoogle Scholar
  36. [36]
    Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Global Environ Chang 26:152–158CrossRefGoogle Scholar
  37. [37]
    Food SCP RT (2013) ENVIFOOD Protocol, Environmental Assessment of Food and Drink Protocol, European Food Sustainable Consumption and Production Round Table (SCP RT), Working Group 1, BrusselsGoogle Scholar
  38. [38]
    Koellner T, de Baan L, Beck T, Brandão M, Civit B, Margni M, Milà i Canals L, Saad R, de Souza DM, Müller-Wenk R (2013) UNEP-SETAC guideline on global land use impact assessment of biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18:1188–1202CrossRefGoogle Scholar
  39. [39]
    de Baan L, Alkemade R, Koellner T (2013) Land use impacts on biodiversity in LCA: a global approach. Int J Life Cycle Assess 18:1216–1230CrossRefGoogle Scholar
  40. [40]
    ISO (2006a) ISO14040. Environmental management – life cycle assessment – principles and framework. International Organization for Standardization, GenevaGoogle Scholar
  41. [41]
    ISO (2006b) ISO 14044. Environmental management – life cycle assessment – requirements and guidelines. International Organization for Standardization, GenevaGoogle Scholar
  42. [42]
    BSI (2011) PAS 2050:2011. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards, LondonGoogle Scholar
  43. [43]
    ISO (2013) ISO/TS 14067:2013. Greenhouse gases – carbon footprint of products – requirements and guidelines for quantification and communication. Technical Specification. International Organisation for Standardisation, GenevaGoogle Scholar
  44. [44]
    WRI & WBCSD (2011) Greenhouse Gas Protocol product life cycle accounting and reporting standard. World Resources Institute and World Business Council for Sustainable Development. Accessed August 2015
  45. [45]
    BSI (2012) PAS 2050-1:2012. Assessment of life cycle greenhouse gas emissions from horticultural products. Supplementary requirements for the cradle to gate stages of GHG assessments of horticultural products undertaken in accordance with PAS 2050. BSI Standards, London.Google Scholar
  46. [46]
    Environdec (2013) PCR on UN CPC 01610 green coffee 2013:21, Version 1.01Google Scholar
  47. [47]
    EU (2013) Commission Recommendation of 9 April 2013 on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations (2013/179/EU). Official Journal of the European Union, 4 May 2013.Google Scholar
  48. [48]
    International Dairy Federation (2010) A common carbon footprint approach for dairy. The IDF guide to standard lifecycle assessment methodology for the dairy sector. Bulletin of the International Dairy Federation 445/2010Google Scholar
  49. [49]
    LEAP (2015) Environmental performance of animal feed supply chains: guidelines for assessment. Livestock Environmental Assessment and Performance Partnership. FAO, RomeGoogle Scholar
  50. [50]
    Garnett T (2009) Livestock-related greenhouse gas emissions: impacts and options for policy makers. Environ Sci Policy 12:491–503CrossRefGoogle Scholar
  51. [51]
    de Vries M, de Boer I (2010) Comparing environmental impacts for livestock products: a review of life cycle assessments. Livest Sci 128:1–11CrossRefGoogle Scholar
  52. [52]
    Cederberg C, Persson UM, Neovius K, Molander S, Clift R (2011) Including carbon emissions from deforestation in the carbon footprint of Brazilian beef. Envir Sci Tech 45:1773–1779CrossRefGoogle Scholar
  53. [53]
    van Middelaar CE, Cederberg C, Vellinga TV, van der Werf HMG, de Boer I (2013) Exploring variability in methods and data sensitivity in carbon footprints of feed ingredients. Int J Life Cycle Assess 18:768–782CrossRefGoogle Scholar
  54. [54]
    Vellinga TV, Blonk H, Marinussen M, van Zeist WJ, de Boer I, Starmans D (2013) Methodology used in FeedPrint: a tool quantifying greenhouse gas emissions of feed production and utilization. Wageningen UR Livestock research Lelystad report 674Google Scholar
  55. [55]
    Williams A, Dominguez H, Leinonen I (2014) A simple approach to land use change emissions for global crop commodities reflecting demand. In: Schenck R, Huizenga D (eds) Proceedings of the 9th international conference on life cycle assessment in the agri-food sector (LCA Food 2014), 8–10 October 2014, San Francisco. ACLCA, VashonGoogle Scholar
  56. [56]
    Audsley E, Brander M, Chatterton J, Murphy-Bokern D, Webster C, Williams A (2009) How low can we go? An assessment of greenhouse gas emissions from the UK food system and the scope for to reduction them by 2050. How low can we go? WWF-UK, WokingGoogle Scholar
  57. [57]
    Plassmann K, Norton A, Attarzadeh N, Jensen MF, Brenton P, Edwards-Jones G (2010) Methodological complexities of carbon footprinting: a sensitivity analysis of key variables in a developing country context. Environ Sci Policy 13:393–404CrossRefGoogle Scholar
  58. [58]
    Brenton P, Edwards-Jones G, Jensen MF, Attarzadeh N, Norton A, Plassmann K (2010) Carbon footprints and food systems: Do current accounting methodologies disadvantage developing countries? The World Bank, Washington DC, USA. ISBN 978-0-8213-8539-5CrossRefGoogle Scholar
  59. [59]
    Jawjit W, Kroeze C, Rattanapan S (2010) Greenhouse gas emissions from rubber industry in Thailand. J Clean Prod 18:403–411CrossRefGoogle Scholar
  60. [60]
    OECD (2014) Green growth indicators 2014. OECD green growth studies. OECD, ParisCrossRefGoogle Scholar
  61. [61]
    Allwood JM, Bosetti V, Dubash NK, Gómez-Echeverri L, von Stechow C (2014) Glossary. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  62. [62]
    Wicke B, Verweij P, van Meijl H, van Vuuren DP, Faaij APC (2012) Indirect land use change: review of existing models and strategies for mitigation. Biofuels 3:87–100CrossRefGoogle Scholar
  63. [63]
    Fritsche UR, Hennenberg K, Hünecke K (2010) The “iLUC Factor” as a means to hedge risks of GHG emissions from indirect land use change – Working Paper. Öko-Institut, DarmstadtGoogle Scholar
  64. [64]
    Graham-Rowe D (2011) Beyond food versus fuel. Nature 474:S6–S8CrossRefGoogle Scholar
  65. [65]
    Sylvester-Bradley R, Thorman RE, Kindred DR, Wynn SC, Smith KE, Rees RM, Topp CFE, Pappa VA, Mortimer ND, Misselbrook TH, Gilhespy S, Cardenas LM, Chauhan M, Bennett G, Malkin S, Munro DG (2015) Minimising nitrous oxide intensities of arable crop products (MIN-NO). Project Report No. 548. AHDB Cereals & OilseedsGoogle Scholar
  66. [66]
    Ostwald M, Henders S (2014) Making two parallel land use sector debates meet: carbon leakage and indirect land use change. Land Use Policy 36:533–542CrossRefGoogle Scholar
  67. [67]
    Netherlands Environmental Assessment Agency (2010) Are models suitable for determining iLUC factors? Netherlands Environmental Assessment Agency (PBL), BilthovenGoogle Scholar
  68. [68]
    EC-JRC-IES (2010) European Commission-Joint Research Centre-Institute for Environment and Sustainability: international reference life cycle data system (ILCD) handbook – general guide for life cycle assessment – detailed guidance. Publications Office of the European Union, LuxembourgGoogle Scholar
  69. [69]
    Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresource Technol 102:437–451CrossRefGoogle Scholar
  70. [70]
    Kløverpris JH, Mueller S (2013) Baseline time accounting: considering global land use dynamics when estimating the climate impact of indirect land use change caused by biofuels. Int J Life Cycle Assess 18:319–330CrossRefGoogle Scholar
  71. [71]
    Finkbeiner M (2014) Indirect land use change – help beyond the hype? Biomass Bioenerg 62:218–221CrossRefGoogle Scholar
  72. [72]
    Muñoz I, Schmidt JH, Brandão M, Weidema BP (2015) Rebuttal to “Indirect land use change (iLUC) within life cycle assessment (LCA) – scientific robustness and consistency with international standards”. GCB Bioenergy 7:565–566CrossRefGoogle Scholar
  73. [73]
    Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, Zaks D (2008) Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ Res Lett 3:034001. CrossRefGoogle Scholar
  74. [74]
    Hoefnagels R, Smeets E, Faaij A (2010) Greenhouse gas footprints of different biofuel production systems. Renew Sust Energ Rev 14:1661–1694CrossRefGoogle Scholar
  75. [75]
    Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Gabrielle B, Goss Eng A, Lucht W, Mapako M, Masera Cerutti O, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlomer G, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, CambridgeGoogle Scholar
  76. [76]
    Wicke B, Dornburg V, Junginger M, Faaij A (2008) Different palm oil production systems for energy purposes and their greenhouse gas implications. Biomass Bioenerg 32:1322–1337CrossRefGoogle Scholar
  77. [77]
    Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238CrossRefGoogle Scholar
  78. [78]
    EC (2009) Directive 2009/28/EC of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. European Commission, BrusselsGoogle Scholar
  79. [79]
    Malins C (2012) A model-based quantitative assessment of the carbon benefits of introducing iLUC factors in the European Renewable Energy Directive. GCB Bioenergy. CrossRefGoogle Scholar
  80. [80]
    Hertel TW, Tyner WE (2013) Market-mediated environmental impacts of biofuels. Glob Food Sec 2:131–137CrossRefGoogle Scholar
  81. [81]
    Laurance WF (2007) Switch to corn promotes Amazon deforestation. Science 318:1721CrossRefGoogle Scholar
  82. [82]
    Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. PNAS 108:3465–3472CrossRefGoogle Scholar
  83. [83]
    EC (2015) Directive (EU) 2015/1513 to reduce iLUC for biofuels and bioliquids, amending Directive 98/70/EC and Directive 2009/28/EC. European Commission, BrusselsGoogle Scholar
  84. [84]
    EC (2012) Commission staff working document. Impact Assessment on indirect land use change related to biofuels and bioliquids. Accompanying the document Proposal for a Directive of the European Parliament and of the Council amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Council Directive 93/12/EC and Directive 2009/28/EC on the promotion of the use of energy from renewable sources. European Commission, BrusselsGoogle Scholar
  85. [85]
    Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, Bloomer P, Burlingame B, Dawkins M, Dolan L, Fraser D, Herrero M, Hoffman I, Smith P, Thornton PK, Toulmin C, Vermeulen S, Godfray HCJ (2013) Sustainable intensification in agriculture: premises and policies. Science 341:33–34CrossRefGoogle Scholar
  86. [86]
    Kuyper TW, Struik PC (2014) Epilogue: global food security, rhetoric, and the sustainable intensification debate. Curr Opin Environ Sustain 8:71–79CrossRefGoogle Scholar
  87. [87]
    Bindraban P, Bulte E, Conijn S, Eickhout B, Hoogwijk M, Londo M (2009) Can biofuels be sustainable by 2020? Assessment for an obligatory blending target of 10% in the Netherlands. Netherlands Environmental Assessment Agency, The HagueGoogle Scholar
  88. [88]
    Royal Society (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. The Royal Society, LondonGoogle Scholar
  89. [89]
    Pretty J, Toulmin C, Williams S (2011) Sustainable intensification in African agriculture. Int J Agr Sustain 9:5–24CrossRefGoogle Scholar
  90. [90]
    Bajželj B, Richards KS, Allwood JM, Smith P, Dennis JS, Curmi E, Gilligan CA (2014) Importance of food-demand management for climate mitigation. Nat Clim Change 4:924–929CrossRefGoogle Scholar
  91. [91]
    Walker N, Patel S, Davies F, Milledge S, Hulse J (2013) Demand-side interventions to reduce deforestation and forest degradation. IIED, LondonGoogle Scholar
  92. [92]
    Carter S, Herold M, Rufino MC, Neumann K, Kooistra L, Verchot L (2015) Mitigation of agricultural emissions in the tropics: comparing forest land-sparing options at the national level. Biogeosciences 12:4809–4825CrossRefGoogle Scholar
  93. [93]
    Gan J, McCarl BA (2007) Measuring transnational leakage of forest conservation. Ecol Econ 64:423–432CrossRefGoogle Scholar
  94. [94]
    Godar J, Gardner TA, Tizado EJ, Pacheco P (2014) Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon. PNAS 111:15591–15596CrossRefGoogle Scholar
  95. [95]
    Popp A, Humpenöder F, Weindl I, Bodirsky BL, Bonsch M, Lotze-Campen H, Müller C, Biewald A, Rolinski S, Stevanovic M, Dietrich JP (2014) Land-use protection from climate mitigation. Nat Clim Change 4:1095–1098CrossRefGoogle Scholar
  96. [96]
    Smith P, Gregory PJ, van Vuuren D, Obersteiner M, Havlík P, Rounsevell M, Woods J, Stehfest E, Bellarby J (2010) Competition for land. Philos T Roy Soc B 365:2941–2957CrossRefGoogle Scholar
  97. [97]
    Sloan S, Sayer JA (2015) Forest resources assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. Forest Ecol Manag 352:134–145CrossRefGoogle Scholar
  98. [98]
    Juffe-Bignoli D, Burgess ND, Bingham H, Belle EMS, de Lima MG, Deguignet M, Bertzky B, Milam AN, Martinez-Lopez J, Lewis E, Eassom A, Wicander S, Geldmann J, van Soesbergen A, Arnell AP, O’Connor B, Park S, Shi YN, Danks FS, MacSharry B, Kingston N (2014) Protected planet report 2014. UNEP-WCMC, CambridgeGoogle Scholar
  99. [99]
    Nepstad D, McGrath D, Stickler C, Alencar A, Azevedo A, Swette B, Bezerra T, DiGiano M, Shimada J, Seroa da Motta R, Armijo E, Castello L, Brando P, Hansen MC, McGrath-Horn M, Carvalho O, Hess L (2014) Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344:1118–1123CrossRefGoogle Scholar
  100. [100]
    Fearnside PM (2015) Deforestation soars in the Amazon. Nature 521:423. Scholar
  101. [101]
    Visseren-Hamakers IJ, McDermott C, Vijge MJ, Cashore B (2012) Trade-offs, co-benefits and safeguards: current debates on the breadth of REDD+. Curr Opin Environ Sustain 4:646–653CrossRefGoogle Scholar
  102. [102]
    Busch J, Ferretti-Gallon K, Engelmann J, Wright M, Austin KG, Stolle F, Turubanova S, Potapov PV, Margono B, Hansen MC, Baccini A (2015) Reductions in emissions from deforestation from Indonesia’s moratorium on new oil palm, timber, and logging concessions. PNAS 112:1328–1333CrossRefGoogle Scholar
  103. [103]
    UNFCCC (2015) Synthesis report on the aggregate effect of the intended nationally determined contributions. Accessed March 2016
  104. [104]
    van Dam J, Junginger M, Faaij APC (2010) From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning. Renew Sust Energ Rev 14:2445–2472CrossRefGoogle Scholar
  105. [105]
    Scarlat N, Dallemand J-F (2011) Recent developments of biofuels/bioenergy sustainability certification: a global overview. Energ Policy 39:1630–1646CrossRefGoogle Scholar
  106. [106]
    Potts J, Lynch M, Wilkings A, Huppé G, Cunningham M, Voora V (2014) The state of sustainability initiatives review. Standards and the green economy. International Institute for Sustainable Development (IISD) and the International Institute for Environment and Development (IIED), Manitoba and LondonGoogle Scholar
  107. [107]
    4C Association (2012) 4C unacceptable practices: background, criteria and indicators, v2.1. Accessed Mar 2016
  108. [108]
  109. [109]
  110. [110]
    Gibbs HK, Munger J, L’Roe J, Barreto P, Pereira R, Christie M, Amaral T, Walker NF (2016) Did ranchers and slaughterhouses respond to zero-deforestation agreements in the Brazilian Amazon? Conserv Lett 9:32–42CrossRefGoogle Scholar
  111. [111]
    Berndes G, Ahlgren S, Börjesson P, Cowie AL (2012) Bioenergy and land use change – state of the art. WIREs Energy Environ CrossRefGoogle Scholar
  112. [112]
    le Polain de Waroux Y, Garrett RD, Heilmayr R, Lambin EF (2016) Land use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano. PNAS. CrossRefGoogle Scholar
  113. [113]
    Creutzig F, Ravindranath NH, Berndes G, Bolwig S, Bright R, Cherubini F, Chum H, Corbera E, Delucchi M, Faaij A, Fargione J, Haberl H, Heath G, Lucon O, Plevin R, Popp A, Robledo-Abad C, Rose S, Smith P, Stromman A, Suh S, Masera O (2015) Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7:916–944CrossRefGoogle Scholar
  114. [114]
    Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate smart soils. Nature 532:49–57CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Yara International ASAResearch Centre for Crop NutritionDülmenGermany

Personalised recommendations