Advertisement

VDI-Wärmeatlas pp 1661-1682 | Cite as

L4.4 Zerstäuben von Flüssigkeiten mit Einstoff-Druckdüsen

  • Peter WalzelEmail author
Chapter
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Literatur

  1. 1.
    Ohnesorge, W.: Formation of drops by nozzles and the breakup of liquid jets. Appl. Math. Mech. 16, 355–358 (1936)Google Scholar
  2. 2.
    Brauer, H.: Grundlagen der Einphasen- und Mehrphasenströmungen. Sauerländer, Aarau/Frankfurt am Main (1971)Google Scholar
  3. 3.
    Reitz, R.D.: Atomization and other breakup regimes of a liquid jet. PhD Thesis, Princeton University, Princeton (1978)Google Scholar
  4. 4.
    Rayleigh, F.: On the instability of jets. Proc. Lond. Math. Soc. 10, 4–13 (1878)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Rayleigh, F.: On the capillary phenomena of Jets. Proc. Roy. Soc. 29, 71–97 (1879)CrossRefGoogle Scholar
  6. 6.
    Sterling, A.M., Sleicher, C.A.: The instability of capillary jets. J. Fluid Mech. 68, 477–495 (1975)zbMATHCrossRefGoogle Scholar
  7. 7.
    R.D. Reitz, F.V. Bracco, Mechanisms of breakup of round liquid jets in Encyclopedia of Fluid Mechanics, Gulf Publishing Company (1986), P.O. Box 2608, Houston, Texas, 77001, U.S.A.Google Scholar
  8. 8.
    Yoon, S.S., Heister, S.D.: Categorizing linear theories for atomizing round jets. Atomization Sprays 13, 499–516 (2003)CrossRefGoogle Scholar
  9. 9.
    Lin, S.P., Reitz, R.D.: Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30, 85–105 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Chigier, N., Reitz, R.D.: Regimes of jet breakup mechanisms, Chapter 4. In: Kuo, K.K. (Hrsg.) Recent Advantages in Spray Combustion, Spray Atomization and Drop Burning Phenomena. AIAA, Reston (1995)Google Scholar
  11. 11.
    Sallam, K.A., Faeth, G.M.: Surface properties during primary breakup of turbulent liquid jets in still air. AIAA J. 41(8), 1514–1524 (2003)CrossRefGoogle Scholar
  12. 12.
    Dumouchel, C.: On the experimental investigation on primary atomization of liquid streams. Exp. Fluids 45, 371–422 (2008)CrossRefGoogle Scholar
  13. 13.
    Sallam, K.A., Dai, Z., Faeth, G.M.: Liquid breakup at the surface of turbulent round liquid jets in still gases. Int. J. Multiphase Flow 28, 427–449 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Yi, Y., Reitz, R.D.: Modeling the primary breakup of sprays. Atomization Sprays 14, 53–80 (2004)CrossRefGoogle Scholar
  15. 15.
    Trinh, H.P., Chen, C.P.: Development of liquid jet atomization and breakup models including turbulence effects. Atomization Sprays 16, 907–932 (2006)CrossRefGoogle Scholar
  16. 16.
    Shinjo, J., Umemura, A.: Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation. Int. J. Multiphase Flow 36, 513–532 (2010)CrossRefGoogle Scholar
  17. 17.
    Movaghar, A., et al.: Numerical investigation of turbulent-jet primary breakup using one-dimensional turbulence. Int. J. Multiphase Flow 89, 241–254 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lefebvre, A.H.: Atomization and Sprays. Taylor & Francis, Oxford (1988)CrossRefGoogle Scholar
  19. 19.
    Bayvel, L., Orzechowski, Z.: Liquid Atomization. Taylor Fancis, Washington, DC (1993). ISBN 0-89116-959-8Google Scholar
  20. 20.
    Walzel, P.: Auslegung von Einstoff-Druckdüsen. Chem.Ing.Tech. 54(4), 313–328 (1982)CrossRefGoogle Scholar
  21. 21.
    Walzel, P.: Zerstäuben von Flüssigkeiten. Chem.Ing.Tech. 62(12), 983–994 (1990)CrossRefGoogle Scholar
  22. 22.
    Troesch, H.A.: Die Zerstäubung von Flüssigkeiten. Chem.Ing.Tech. 26(6), 311–320 (1954)CrossRefGoogle Scholar
  23. 23.
    Albrecht, H.E., Borys, M., Damaschkle, N., Tropea, C.: The imaging properties of scattering particles in laser beams. Meas. Sci. Technol. 10(6), 564–574 (1999). ISSN 0957-0233CrossRefGoogle Scholar
  24. 24.
    Roisman, I.V., Tropea, C.: Flux measurement in sprays using Phase Doppler techniques. Atomization Sprays 11, 673–705 (2001)Google Scholar
  25. 25.
    Damaschke, N., Nobach, H., Tropea, C.: Optical limits of particle concentration for multi-dimensional particle sizing techniques in fluid mechanics. Exp. Fluids 32(2), 143–152 (2002). ISSN 0723-4864CrossRefGoogle Scholar
  26. 26.
    Nonn, T., Jaunet, V., Hellmann, S.: Spray Droplet Size Velocity Measurement Using Light-Field Velocimetry. ICLASS 2012, Heidelberg, Deutschland (2012)Google Scholar
  27. 27.
    Dumouchel, C., Blaisot, J.B., Ngo, V.D.: Representation of Laser Diffraction Diameter Distribution with a 3-Paramter Generalized Gamma Function. ICLASS 2012, Heidelberg (2012)Google Scholar
  28. 28.
    S. Middleman, Modeling Axisymmetric Flows, Academic Press Inc., A Division of Harcourt Brace & Company, 525 B Street, Suite 1900, San Diego, CA, U.S.A. (1995), ISBN 0-12-494950-9 Inzwischen auch erhältlich bei als e-Book ISBN 9780080536637Google Scholar
  29. 29.
    Walzel, P.: Advantages and Limits in Large Scale Modeling of Atomizers. ICLASS 1982, Madison (1982)Google Scholar
  30. 30.
    Harkins, W.D., Brown, F.E.: The determination of surface tension and the weight of falling drops. J. Am. Chem. Soc. 41, 499–524 (1919)CrossRefGoogle Scholar
  31. 31.
    Scheele, G.F., Meister, B.J.: Drop formation at low velocities in liquid-liquid systems. AIChE J. 14, 9–15 (1968)CrossRefGoogle Scholar
  32. 32.
    Walzel, P.: Koaleszenz von Flüssigkeitsstrahlen an Brausen. Chem.Ing.Tech. 52(8), 652–654 (1980)CrossRefGoogle Scholar
  33. 33.
    Weber, C.: Zum Zerfall eines Flüssigkeitsstrahles. Z. Angew. Math. Mech. 11, 136–154 (1931)zbMATHCrossRefGoogle Scholar
  34. 34.
    Haehnlein, A.: Über den Zerfall eines Flüssigkeitsstrahles. Forschung auf dem Gebiet des Ingenieurwesens 2, 139–149 (1931)CrossRefGoogle Scholar
  35. 35.
    Brenn, G.: Die gesteuerte Sprayerzeugung für industrielle Anwendungen. Habilitationsschrift, Universität Erlangen-Nürnberg (1999)Google Scholar
  36. 36.
    Brandenberger, H.: Immobilisierung von Biokatalysatoren in monodisperse Alginatpartikel mittels Eindüsen- und Mehrdüsenanlage. Dissertation, ETH, Zürich (1999)Google Scholar
  37. 37.
    Eggers, J., Villermaux, E.: Physics of liquid jets. Rep. Prog. Phys. 71(3), 36601 (2008)CrossRefGoogle Scholar
  38. 38.
    Mason, B.J., Jayaratne, O.W., Woods, J.D.: An improved vibrating capillary device for producing uniform water droplets of 15 to 200 μm radius. J. Sci. Instrm. 40, 247–249 (1965)CrossRefGoogle Scholar
  39. 39.
    Tebel, K.H.: Monodisperse Tropfenerzeugung aus einem zwangsgestörten Freistrahl. Chem.Ing.Tech. 55(2), 160–161 (1983)., MS 1076/83CrossRefGoogle Scholar
  40. 40.
    Schröder, T.: Tropfenbildung an Gerinneströmungen im Schwere- und Zentrifugalfeld. Dissertation, University of Duisburg-Essen, VDI Forsch-Heft R 3, Nr. 503, VDI Verlag Düsseldorf (1997)Google Scholar
  41. 41.
    Schneider, S.: Erzeugung und Zerfall gedehnter Flüssigkeitsstrahlen im Schwerefeld. Dissertation, TU Dortmund (2002)Google Scholar
  42. 42.
    Mescher, A.: Einfluss der Gasführung In Sprühtrocknern auf den Fadenzerfall an Rotationszerstäubern. Dissertation, TU Dortmund (2012)Google Scholar
  43. 43.
    Schneider, S., Walzel, P.: Disintegration of liquid jets under gravity. ILASS-Europe, Toulouse (1999)Google Scholar
  44. 44.
    Koch, M.: Beiträge zur Katalysatorverkapselung im Sprühverfahren. Dissertation, TU Dortmund (2003)Google Scholar
  45. 45.
    Mescher, A., Möller, A., Dirks, M., Walzel, P.: Gravity affected break-up of laminar threads at low gas-relative-velocities. Chem. Eng. Sci. 69, 181–119 (2012)CrossRefGoogle Scholar
  46. 46.
    Gramlich, S., Mescher, A., Piesche, M., Walzel, P.: Modellierung und experimentelle Untersuchung des gasinduzierten Zerfalls gedehnter Flüssigkeitsstrahlen im Erdschwerefeld. Chem.Ing.Tech. 83(3), 273–279 (2011)CrossRefGoogle Scholar
  47. 47.
    Gramlich, S.: Numerische und experimentelle Untersuchungen zum Zerfall feststoffbeladener Flüssigkeitsstrahlen im Zentrifugalfeld. Dissertation, Universität Stuttgart (2011)Google Scholar
  48. 48.
    Kalmbach, T.: Bewegung und Zerfall laminarer Suspensionsstrahlen im Zentrifugalfeld. Disseration, University of Stuttgart, Shaker, Aachen (2016)Google Scholar
  49. 49.
    Grassmann, P.: Physikalische Grundlagen der Verfahrenstechnik. Salle & Sauerländer, 3. Aufl. (1983)Google Scholar
  50. 50.
    Dahl, H.D.: Theoretische und experimentelle Untersuchungen mit Hohlkegeldüsen. Dissertation, University of Stuttgart . 3 Nr. 302, VDI Verlag Duesseldorf (1992)Google Scholar
  51. 51.
    Wu, P.K., Reitz, R.D., Bracco, F.V.: Measurement of drop size at the spray edge near the nozzle in atomizing liquid jets. Phys. Fluids 29(4), 941–951 (1986)CrossRefGoogle Scholar
  52. 52.
    Hiroyasu, H., Shimizu, M., Arai, M.: The Breakup of High Speed Jets in a High Pressure Gaseous Atmosphere. ICLASS-1982, Madison (1982)Google Scholar
  53. 53.
    Platzer, E., Sommerfeld, M.: Modeling oft the turbulent atomization of liquids and spray formation. In: Walzel, P., Tropea, C. (Hrsg.) Final Presentation of the DFG-research program, Atomization and Spray Processes, Proceedings. Shaker, Aachen . ISBN 3-8322-2570-6 (2004)Google Scholar
  54. 54.
    Sedarsky, D., Rahm, M., Falgout, Z., Linne, M.: Visualization of Low-Level Swirl Effects in Fuel Injection Sprays. ILASS-Europe, Bremen (2014)Google Scholar
  55. 55.
    Sher, E., Bar-Kohany, T., Rashkovan, A.: Flash-boiling atomization. Progr. Energy Combust. Sci. 34, 417–439 (2008)CrossRefGoogle Scholar
  56. 56.
    Monse, C.: Zur Strukturbildung von sprühgetrockneten Partikeln. Dissertation, TU Dortmund (2009)Google Scholar
  57. 57.
    Günther, A., Wirth, K-E.: Key Factors on Superheated Atomization. ILASS-Europe, Bremen (2014)Google Scholar
  58. 58.
    Mayer, W.O.: Atomization and breakup of cryogenic propellants under high-pressure subcritical and supercritical conditions. J. Propuls. Power 14(5), 835–884 (1998)CrossRefGoogle Scholar
  59. 59.
    Moshkovich, Y., Levy, Y., Sher, I., Sher, E.: Energy Aspects in Spray Formation by Homogenous Flash Boiling. ILASS-Europe, Valencia (2017)Google Scholar
  60. 60.
    Hayashi, T., Suzuki, M., Ikemoto, M.: Visualization of Internal Flow and Spray Formation with Real Size Diesel Nozzle. ICLASS 2012, Heidelberg (2012)Google Scholar
  61. 61.
    Payri, R., Gimeno, J., Viera J.P., Plazas, A.H.: Schlieren Visualization of Transient Vapor Penetration and Spreading Angle of a Prototype Diesel Direct-Acting Piezoelectric injector. ICLASS 2012, Heidelberg (2012)Google Scholar
  62. 62.
    Weber, D., Leick, Ph.: Structure and Velocity Field of Individual Plumes of Flashing Gasoline Direct Injection Sprays. ILASS-Europe, Bremen (2014)Google Scholar
  63. 63.
    Ashgriz, N.: Handbook of Atomization and Sprays. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  64. 64.
    DIN 66145: Beuth Verlag, Berlin (1976)Google Scholar
  65. 65.
    Savart, F.: Memoire sur le choc d’une veine liquide lancee contre un plan circulaire. Ann. Chim. 54, 56–87 (1833)Google Scholar
  66. 66.
    Huang, J.C.P.: The break-up of axisymmetric liquid sheets. J. Fluid Mech. 43, 305–319 (1970)CrossRefGoogle Scholar
  67. 67.
    Fraser, R.P., Eisenklam, P., Dombrowski, N., und Hasson, D.: Drop formation from rapidly moving sheets. AIChE J. 8(5), 672–680 (1962)CrossRefGoogle Scholar
  68. 68.
    Taylor, T.: The dynamics of thin sheets of fluids, III-Disintegration of fluid sheets. Proc. Roy Soc. A. 253, 313–321 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Squire, H.B.: Investigation of the Instability of a moving liquid film. Br. J. Appl. Phys. 4, 167–169 (1953)CrossRefGoogle Scholar
  70. 70.
    Hagerty, W., Shea, J.F.: A study oft the stability of thin sheets. J. Appl. Mech. 22, 509–514 (1955)Google Scholar
  71. 71.
    Dombrowski, N., Johns, W.R.: The aerodynamic instability and disintegration of viscous liquid sheets. Chem. Eng. Sci. 18(3), 203–214 (1963)CrossRefGoogle Scholar
  72. 72.
    Li, X., Tankin, R.S.: On the temporal instability of two-dimensional liquid sheets. J. Fluid Mech. 226, 425–443 (1991)zbMATHCrossRefGoogle Scholar
  73. 73.
    Mehring, C.: Modeling thin films for spray application. In: Walzel, P., Tropea, C. (Hrsg.) Final Presentation of the DFG Research Program, Atomization and Spray Processes, Proceedings. Shaker Verlag, Aachen. ISBN 3-8322-2570-6 (2004)Google Scholar
  74. 74.
    Wilhelm, S.: Tropfenbildung an Lamellen und Filmen. Dissertation. VDI-Fortschrittsber., R 3, Nr. 312, VDI Verlag Duesseldorf und Dissertation, Universität Essen (1992)Google Scholar
  75. 75.
    Dombrowski, N., Wolfsohn, D.L.: The atomization of water by swirl spray pressure nozzles. Trans. Inst. Chem. Eng. 50, 258–269 (1972)Google Scholar
  76. 76.
    Walzel, P.: Spraying and atomizing of liquids. In: Ullmann’s Encyclopedia of Technical Chemistry B2. Wiley-VCH, Weinheim (2009)Google Scholar
  77. 77.
    Walzel, P.: Zerstäuben von Flüssigkeiten-Stand der Technik und Ausblick. Chem.Ing.Tech. 80(9), 1415 (2008)CrossRefGoogle Scholar
  78. 78.
    Senecal, P.K., Schmidt, D.P., Nouar, I., Rutland, C.J., Reitz, R.D., Corradini, M.L.: Modeling high-speed viscous liquid sheet atomization. Int. J. Multiphase Flow 25(6–7), 1073–1097 (1999)zbMATHCrossRefGoogle Scholar
  79. 79.
    Schmidt, D.P., Nouar, I., Senecal, P.K., Hoffmann, J., Rutl, C.J.: Pressure atomization in the near field, SAE paper 1999-01-0496 (1999)Google Scholar
  80. 80.
    Walzel, P., Broll, P.: Lamella Disintegration at Sheet Forming Nozzles, Estimates for Drop Sizes. ILASS-Europe, Zaragoza (2002)Google Scholar
  81. 81.
    Torres, D.J., Trujillo, M.F.: KIVA-4: an unstructured ALE-code for compressible gas flow with sprays. J. Comput. Phys. 219, 943–975 (2006)zbMATHCrossRefGoogle Scholar
  82. 82.
    Gnirß, M., Heukelbach, K., Tropea, C.: Influence of nozzle flow on the atomization of liquid sheets and round jets. In: Walzel, P., Tropea, C. (Hrsg.) Final Presentation of the DFG-Research Program Atomization and Spray Processes, Proceedings. Shaker, Aachen . ISBN 3-8322-2570-6 (2004)Google Scholar
  83. 83.
    Han, Z., Reitz, R.D.: Turbulence modeling on internal combustion engines using RNG k-ɛ models. Combust. Sci. Technol. 106, 207–215 (1995)CrossRefGoogle Scholar
  84. 84.
    Brodkey, R.S.: ThePhenomena of Fluid Motions. Addison-Wesley, Reading (1969)Google Scholar
  85. 85.
    Hinze, J.O.: Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1(3), 289–295 (1955)CrossRefGoogle Scholar
  86. 86.
    Clift, R., Grace, J., Weber, M.E.: Bubbles, Drops, Particles. Dover Publications, New York (1978)Google Scholar
  87. 87.
    Faeth, G.M., Hsiang, L.P., Wu, P.K.: Structure and breakup properties of sprays. Int. J. Multiphase Flow 21, 99–127 (1995)zbMATHCrossRefGoogle Scholar
  88. 88.
    Pilch, M., Erdmann, C.A.: Use of breakup time data and velocity data to predict the maximum size of stable fragments for accelerated induced breakup of a liquid drop. Int. J. Multiphase Flow 13, 741–757 (1987)Google Scholar
  89. 89.
    Schmelz, F., Walzel, P.: Breakup of liquid droplets in accelerated gas flows. Atomization Spays 13(4), 357–372 (2003)CrossRefGoogle Scholar
  90. 90.
    Schmelz, F.: Tropfenzerfall in beschleunigten Gasströmungen. Dissertation, TU Dortmund (2002)Google Scholar
  91. 91.
    Sazhin, S.: Droplets and Sprays. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  92. 92.
    Tanner, F.X., Weisser, G.: Simulation of liquid jet atomization for fuel sprays by means of cascade drop breakup. SAE Techn. Paper Ser. 980808 (1998)Google Scholar
  93. 93.
    Orme, M.: Experiments on droplet collision, bounce, coalescence and disruption. Progr. Energy Combust. Sci. 23, 65–79 (1997)CrossRefGoogle Scholar
  94. 94.
    Post, S.L., Abraham, J.: Modeling the outcome of drop-drop collisions in Diesel sprays. Int. J. Multiphase Flow 28, 997–1019 (2002)zbMATHCrossRefGoogle Scholar
  95. 95.
    Munnannur, A., Reitz, R.D.: A new predictive model for fragmenting and non-fragmenting binary droplet collisions. Int. J. Multiphase Flow 33, 873–896 (2007)CrossRefGoogle Scholar
  96. 96.
    Brenn, G., Kolobaric, V.: Satellite droplet formation by unstable binary drop collisions. Phys. Fluids 18 (2006).  https://doi.org/10.1063/1.2225363
  97. 97.
    Dahl, H.D., Trautmann, P.: Einfluss der Einlaufgeometrie auf das Betriebsverhalten von Hohlkegeldüsen. Chem.Ing.Tech. 65(8), 962–964 (1993)CrossRefGoogle Scholar
  98. 98.
    Dahl, H., Muschelknautz, E.: Zerstäubung von Flüssigkeiten und Suspensionen mit Hohlkegeldüsen. Chem.Ing.Tech. 64(10), 961–963 (1992)CrossRefGoogle Scholar
  99. 99.
    Broll, P.: Erfassung der Lamellenparameter an Hohlkegeldüsen. Dissertation, TU Dortmund (2006)Google Scholar
  100. 100.
    Tratnig, A.: Characteristics of sprays produced by pressure swirl atomizers. Dissertation, TU Graz (2009)Google Scholar
  101. 101.
    Löffler-Mang, M.: Düseninnenströmung, Tropfenentstehung und Tropfenausbreitung bei rücklaufgeregelten Drall-Druckzerstäubern. Dissertation, Universität Karlsruhe (1992)Google Scholar
  102. 102.
    Horvay, M.: Theoretische und experimentelle Untersuchungen über den Einfluss des inneren Strömungsfeldes auf die Zerstäubungseigenschaften von Drall-Druckzerstäubungsdüsen. Dissertation, Universität Karlsruhe (1985)Google Scholar
  103. 103.
    Dumouchel, C., Bloor, M.J.G., Dombrowski, N., Ingham, D.B., Ledoux, M.: Viscous Flow in a swirl atomizer. Chem. Eng. Sci. 48(1), 81–87 (1993)CrossRefGoogle Scholar
  104. 104.
    Taylor, G.: The mechanics of swirl atomizers. Int. Congr. Appl. Mechan. 3, 280–285 (1948)Google Scholar
  105. 105.
    Söhngen, E., Grigull, U.: Der Strahlwinkel von Brennstoff-Dralldüsen bei kontinuierlicher Einspritzung. Forsch auf dem Gebiet d. Ingenieurwesen 17(3), 77–82 (1951)CrossRefGoogle Scholar
  106. 106.
    Giffen, A., Muraszew, B.: The Atomization of Liquid Fuels. Chapman & Hall Ltd, London (1953)Google Scholar
  107. 107.
    Abramovich, G.N.: Angewandte Gasdynamik. VEB, Berlin (1958)Google Scholar
  108. 108.
    Musemic, E., Walzel, P.: Durchsatzverhalten von Hohlkegeldüsen. Chem.Ing.Tech. 83(3), 237–246 (2011)CrossRefGoogle Scholar
  109. 109.
    Musemic, E.: Experimentelle Untersuchungen zum Tropfenbildungsprozess an Hohlkegeldüsen. Dissertation, TU Dortmund (2013)Google Scholar
  110. 110.
    Wimmer, E., Brenn, G.: Viscous flow through the swirl chamber of a pressure-swirl atomizer. Int. J. Multiphase Flow 53, 100–113 (2013)CrossRefGoogle Scholar
  111. 111.
    Broll, P., Maatje, U., Walzel, P., von Lavante, E.: Experimental and Numerical Study on Swirl Pressure Atomizers. ILASS-Europe, Darmstadt (2000)Google Scholar
  112. 112.
    Nonnenmacher, S., Piesche, M.: Numerische Untersuchung der Strömungsverhältnisse im Inneren von Hohlkegeldüsen mit Leitapparat. Chem. Ing. Tech. 71(7), 688–692 (1999)CrossRefGoogle Scholar
  113. 113.
    Nonnenmacher, S., Piesche, M.: Design of hollow cone pressure swirl nozzles to atomize Newtonian fluids. Chem. Eng. Sci. 55(19), 4339–4348 (2000)CrossRefGoogle Scholar
  114. 114.
    Mehring, C., Sirignano, W.A.: Nonlinear capillary wave distortion and disintegration of thin planar liquid sheets. J. Fluid Mech. 388, 69–113 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    Mehring, C., Siringnano, W.A.: Nonlinear capillary waves on swirling axisymmetric free liquid films. Int. J. Multiphase Flow 27, 1707–1734 (2001)zbMATHCrossRefGoogle Scholar
  116. 116.
    Glaser, H.W.: Das Zerstäuben von Suspensionen mit Ein- und Zweistoffdüsen. Dissertation, Universität Essen (1989)Google Scholar
  117. 117.
    Kamplade, J.: Untersuchung zum Sprühverhalten von Drall-Druckdüsen mit modifizierter Mündungsgeometrie. Dissertation, TU Dortmund (2017)Google Scholar
  118. 118.
    Dombrowski, N., Hasson, D., Ward, D.E.: Some aspects of liquid flow through fan jet nozzles. Chem. Eng. Sci. 12(1), 35–50 (1960)CrossRefGoogle Scholar
  119. 119.
    Mulhem, B., Khoja, G., Fritsching, U.: Breakup of Hollow Cone and Flat Sheet Suspension Lamellae from Pressure Atomizers. ICLASS 2006, Kyoto (2006)Google Scholar
  120. 120.
    Bautsch, C.: (2011) Zur Modellierung, Simulation und Optimierung von Rauchgasentschwefelungs-wäschern. Dissertation, TU Dortmund, & Hut München, 2012Google Scholar
  121. 121.
    Dombrowski, N., Hasson, D.: The flow characteristic of swirl spray pressure nozzles with low viscosity liquids. AIChE J. 15(4), 604–611 (1969)CrossRefGoogle Scholar
  122. 122.
    Dombrowski, N., Wolfssohn, D.L.: The Atomisation of water by swirl spray pressure nozzles. Trans. Inst. Chem. Eng. 50, 259–269 (1972)Google Scholar
  123. 123.
    Feggeler, D., Landwehr, F., Walzel, P., Weicert, F., Müller, H. Fibre Sensor Based Frequency Analysis of Surface Waves at Hollow Cone Nozzles. ILASS-Europe, Orleans (2005)Google Scholar
  124. 124.
    Kennedy, J.B.: High Weber number SMD correlations for pressure atomizers. J. Eng. Gas Turbines Power 108, 101–195 (1986)CrossRefGoogle Scholar
  125. 125.
    Walzel, P.: Turbulenter Zerfall von Flüssigkeitsstrahlen aus der Sicht der Ähnlichkeitstheorie. Chem.Ing.Tech. 52(6), 525–526 (1980)CrossRefGoogle Scholar
  126. 126.
    Walzel, P.: Tropfenverteilungen und Wirkungsgrad beim Zerstäuben von Flüssigkeiten mit einer Turbulenzdüse. Chem.Ing.Tech. 52(12), 985 (1980)Google Scholar
  127. 127.
    Yule, A.J., Sharief, A.A., Jeong, J.R., Nasr, G.G., James, D.D.: The performance characteristics of solid-cone-spray pressure-swirl atomizers. Atomization Sprays 10, 627–646 (2000)Google Scholar
  128. 128.
    Walmsley, S.J., Watkins, A.P., Yule, A.J.: On the prediction and structures of wider angle full-cone liquid sprays. Atomization Sprays 11, 453–470 (2001)CrossRefGoogle Scholar
  129. 129.
    Kohnen, B.T., Pieloth, D., Musemic, E., Walzel, P.: Characterization of full cone nozzles. Atomization Sprays 21, 317–325 (2011)CrossRefGoogle Scholar
  130. 130.
    Schwarzkopf, J.D., Shakal, J.S., Bounuccelli, C.: A New Method Minimizing Flux Errors Associated with PDA-Measurements in Dilute Region of Full Cone Pressure Nozzle Swirl Atomizers. ICLASS 2006, Kyoto (2006)Google Scholar
  131. 131.
    Rothe, P.H., Block, J.A.: Aerodynamic of liquid sprays. Int. J. Multiphase Flow 3, 263–272 (1977)CrossRefGoogle Scholar
  132. 132.
    Lee, S.Y., Tankin, R.S.: Study of liquid spray (water) in a non-condensable environment (air). Int. J. Heat Mass Transf. 27(3), 351–361 (1984)CrossRefGoogle Scholar
  133. 133.
    Lee, S.Y., Tankin, R.S.: Study of liquid spray (water) in a condensable environment (steam). Int. J. Heat Mass Transf. 27(3), 363–374 (1984)CrossRefGoogle Scholar
  134. 134.
    Walzel, P., Scislowski, J., Schaldach, G.: Expansion and Reformation of Conical Jets. ILASS-Europe, Bremen (2014)Google Scholar
  135. 135.
    Pieloth, D.: persönliche Mitteilung (2013)Google Scholar
  136. 136.
    Hinds, W.C.: Aerosol Technology, Properties Behavior and Measurements of Airborn Particles, 2. Aufl. Wiley, New York (1999)Google Scholar
  137. 137.
    Günther, R.: Verbrennung und Feuerung. Springer, Heidelberg (1974)CrossRefGoogle Scholar
  138. 138.
    Franco, F., Fukumoto, Y.: Mathematical Models for Turbulent Round Jets Based on „Ideal“ and Lossy Conservation of Mass and Energy. ILASS-Europe, Valencia (2017)Google Scholar
  139. 139.
    Gao, F., Fritsching, U.: Study of binary in flight melt drop collisions. Mat.-Wissenschaft u. Werkstofftechn. 41(7), 547–554 (2010)CrossRefGoogle Scholar
  140. 140.
    Pasternak, L., Sommerfeld, M.: Experimental Investigation of Size Effects in Colliding Droplet. ILASS-Europe, Valencia (2017)Google Scholar
  141. 141.
    Blei, S., Sommerfeld, M.: CFD in drying technology – spray dryer-simulation. In: Tsotsas, E., Mujumdar, A.S. (Hrsg.) Modern Drying Technology I. Wiley VCH, Weinheim (2007)Google Scholar
  142. 142.
    Sommerfeld M., Lain, S.: Numerical Analysis of Sprays with Advanced Collision Model. ILASS- Europe, Valencia (2017)Google Scholar
  143. 143.
    Ranz, W.E., Marshall, W.R.: Evaporation from drops. Chem. Eng. Progr. 48, 141–180 (1952)Google Scholar
  144. 144.
    Abramzon, B., Sirignano, W.A.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transf. 32, 1605–1618 (1989)CrossRefGoogle Scholar
  145. 145.
    Yarin, A.L., Brenn, G., Kastner, O., Tropea, C.: Drying of acoustically levitated droplets of liquid-solid suspensions: evaporation and crust formation. Phys. Fluids 14(7) (2002)Google Scholar
  146. 146.
    Sirignano, W.A.: Fluid Dynamics and Transport of Droplets and Sprays. Cambridge University Press, Cambridge, UK (1999)CrossRefGoogle Scholar
  147. 147.
    Sazhin, S.: Droplets and Sprays. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  148. 148.
    Joos, F.: Technische Verbrennung. Springer, Heidelberg (2006)Google Scholar
  149. 149.
    Masters, K.: Spray Drying Handbook, 3. Aufl. Wiley, New York/London (1979)Google Scholar
  150. 150.
    Yarin, A., Roisman, I.V., Tropea, C.: Collision Phenomena in Liquids and Solids. Cambridge University Press, Cambridge, UK (2017)zbMATHCrossRefGoogle Scholar
  151. 151.
    Horacek, B., Kiger, K., Kim, J.: Single nozzle spray cooling heat transfer mechanisms. Int. J. Heat Mass Transf. 48(8), 1425–1438 (2005)CrossRefGoogle Scholar
  152. 152.
    Kim, J.: Spray cooling heat transfer: the state of the art. Int. J. Heat Fluid Flow 28(4), 753–767 (2007)CrossRefGoogle Scholar
  153. 153.
    Todorov, T.: Wärmeübergang bei der Sprühkühlung unter Berücksichtigung der Sprühstrahlparameter. Dissertation, TU Magdeburg (2007)Google Scholar
  154. 154.
    Batzdorf, S., et al.: Heat transfer during simultaneous impact of two drops onto a hot solid substrate. Int. J. Heat Mass Transf. (2017).  https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.091
  155. 155.
    Breitbach, J., Roisman, I.V., Tropea, C.: Heat transfer in the film boiling regime: single drop impact and spray. Int. J. Heat Mass Transf. 110(7), 34–42 (2017)CrossRefGoogle Scholar
  156. 156.
    Fritsching, U.: Process Spray-Functional Particles Produced in Spray Processes. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  157. 157.
    Yarin, A.L.: Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman Group, New York (1993)zbMATHGoogle Scholar
  158. 158.
    Wozniak, G.: Zerstäubungstechnik: Prinzipien, Verfahren, Geräte. Springer, Heidelberg (2013)Google Scholar
  159. 159.
    Nasr, G.G., Yule, A.J., Bendig, L.: Industrial Sprays and Atomization. Springer (2002)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Fakultät Bio- und ChemieingenieurwesenTechnische Universität DortmundDortmundDeutschland

Section editors and affiliations

  • Dieter Mewes
    • 1
  1. 1.Leibniz Universität HannoverHannoverDeutschland

Personalised recommendations