Advertisement

VDI-Wärmeatlas pp 1543-1559 | Cite as

L3.1 Bewegung fester Partikel in Gasen und Flüssigkeiten

  • Martin SommerfeldEmail author
Chapter
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Literatur

  1. 1.
    Sommerfeld, M., van Wachem, B., Oliemans, R.: Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. ERCOFTAC European Research Community on Flow, Turbulence and Combustion (2008). ISBN:978-91-633-3564-8Google Scholar
  2. 2.
    Crowe, C.T. (Hrsg.): Multiphase Flow Handbook. CRC Press/Taylor & Francis Group, Boca Raton (2006)zbMATHGoogle Scholar
  3. 3.
    Crowe, C.T., Schwarzkopf, J.D., Sommerfeld, M., Tsuji, Y.: Multiphase flows with Droplets and Particles (Second Edition). CRC Press, Boca Raton (2012)Google Scholar
  4. 4.
    Sommerfeld, M.: Modellierung und numerische Berechnung von partikelbeladenen Strömungen mit Hilfe des Euler/Lagrange-Verfahrens. Berichte aus der Strömungsmechanik. Shaker Verlag, Aachen (1996)Google Scholar
  5. 5.
    Basset, A.B..: On the motion of a sphere in a viscous liquid. Phil. Trans. R. Soc. A. A179, 43–69 (1888)zbMATHCrossRefGoogle Scholar
  6. 6.
    Boussinesq, J.V.: Sur la resistance d’une sphere solide. C.R. Hebd. Seanc. Acad. Sci. Paris. 100, 935 (1885)zbMATHGoogle Scholar
  7. 7.
    Oseen, C.W.: Hydromechanik, S. 132. Akademische Verlagsgemeinschaft, Leipzig (1927)Google Scholar
  8. 8.
    Tchen, C.-M.: Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid. Dissertation, Technische Hochschule Delft, Martinus Nijhoff, The Hague (1947)Google Scholar
  9. 9.
    Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883–889 (1983)zbMATHCrossRefGoogle Scholar
  10. 10.
    Hjelmfelt Jr., A.T., Mockros, L.F.: Motion of discrete particles in a turbulent fluid. Appl. Sci. Res. 16, 149–161 (1966)CrossRefGoogle Scholar
  11. 11.
    Tenneti, S., Subramaniam, S.: Particle-resolved direct numerical simulation for gas-solid flow model development. Annu. Rev. Fluid Mech. 46, 199–230 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Stokes, G.G.: On the effect of the internal frictions of fluids on the motion of pendulums. Trans. Cambr. Phil. Soc. 9, 8–106 (1851)Google Scholar
  13. 13.
    Schlichting, H., Gersten, K.: Grenzschicht-Theorie, 10., überarb. Aufl. Springer Verlag, Berlin (2006)Google Scholar
  14. 14.
    Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles. Academic, New York (1978)Google Scholar
  15. 15.
    Schiller, L., Naumann, A.: Über die grundlegende Berechnung bei der Schwerkraftaufbereitung. Ver. Deut. Ing. 44, 318–320 (1933)Google Scholar
  16. 16.
    Torobin, L.B., Gauvin, W.H.: The drag coefficient of single spheres moving in steady and accelerated motion in a turbulent fluid. AICHE J. 7, 615–619 (1961)CrossRefGoogle Scholar
  17. 17.
    Uhlherr, P.H.T., Sinclair, C.G.: The effect of free stream turbulence on the drag coefficient of spheres. Proc. Chem. 1, 1–13 (1970)Google Scholar
  18. 18.
    Bagchi, P., Balachandar, S.: Effect of turbulence on the drag and lift of a particle. Phys. Fluids 15, 3496–3513 (2003)zbMATHCrossRefGoogle Scholar
  19. 19.
    Sawatzki, O.: Über den Einfluß der Rotation und der Wandstöße auf die Flugbahn kugeliger Teilchen im Luftstrom. Dissertation, University of Karlsruhe (1961)Google Scholar
  20. 20.
    Hölzer, A., Sommerfeld, M.: Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles. Comput. Fluids 38, 572–589 (2009)CrossRefGoogle Scholar
  21. 21.
    Haider, A., Levenspiel, O.: Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 58, 63–70 (1989)CrossRefGoogle Scholar
  22. 22.
    Thompson, T.L., Clark, N.N.: A holistic approach to particle drag prediction. Powder Technol. 67, 57–66 (1991)CrossRefGoogle Scholar
  23. 23.
    Hölzer, A., Sommerfeld, M.: New and simple correlation formula for the drag coefficient of non-spherical particles. Powder Technol. 184, 371–365 (2008)CrossRefGoogle Scholar
  24. 24.
    Brenner, H.: The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci. 16, 242–251 (1961)CrossRefGoogle Scholar
  25. 25.
    Faxen, H.: Der Wiederstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist. Arkiv für Mathematik, Astronomi o. Fysik. 18, 1–52 (1924)Google Scholar
  26. 26.
    Zeng, L., Najiar, F., Balachandar, S., Fischer, P.: Forces on a finite-size particle located close to a wall in a linear shear flow. Phys. Fluids 21, 033302 (2009)zbMATHCrossRefGoogle Scholar
  27. 27.
    Sommerfeld, M.: Particle Motion in Fluids. VDI-Buch: VDI Heat Atlas, S. 1181–1196. Springer Verlag, Berlin/Heidelberg, Part 11 (2010). ISBN:978-3-540-77877-9Google Scholar
  28. 28.
    Davies, C.N.: Definitive equation for the fluid resistance of spheres. Proc. Phys. Soc. 57, 1060–1065 (1945)CrossRefGoogle Scholar
  29. 29.
    Reeks, M.W., McKee, S.: The dispersive effect of Basset history forces on particle motion in turbulent flow. Phys. Fluids 27, 1573–1582 (1984)zbMATHCrossRefGoogle Scholar
  30. 30.
    Odar, F., Hamilton, W.S.: Forces on a sphere accelerating in a viscous fluid. J. Fluid Mech. 18, 302–314 (1964)zbMATHCrossRefGoogle Scholar
  31. 31.
    Michaelides, E.E., Roig, A.: A reinterpretation of the Odar and Hamilton data on the unsteady equation of motion of particles. AICHE J. 57, 2997–3002 (2011)CrossRefGoogle Scholar
  32. 32.
    Michaelides, E.E.: A novel way of computing the Basset term in unsteady multiphase flow computations. Phys. Fluids A. 4, 1579–1582 (1992)zbMATHCrossRefGoogle Scholar
  33. 33.
    Hinsberg, M.A.T., Ten Thije Boonkamp, J.H.M., Clercx, H.J.H.: An efficient, second order method for the approximation of the Basset history force. J. Comput. Phys. 230, 1465–1478 (2011)zbMATHCrossRefGoogle Scholar
  34. 34.
    Löffler, F.: Staubabscheidung. Georg Thieme Verlag, Stuttgart (1988)Google Scholar
  35. 35.
    Saffman, P.G.: The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385–400 (1965)zbMATHCrossRefGoogle Scholar
  36. 36.
    Saffman, P.G.: Corrigendum to: „The lift on a small shere in a slow shear flow“. J. Fluid Mech. 31, 624 (1968)CrossRefGoogle Scholar
  37. 37.
    Mei, R.: An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. Int. J. Multiphase Flow 18, 145–147 (1992)zbMATHCrossRefGoogle Scholar
  38. 38.
    Dandy, D.S., Dwyer, H.A.: A sphere in shear flow at finite Reynolds number: Effect of shear on particle lift, drag, and heat transfer. J. Fluid Mech. 216, 381–410 (1990)CrossRefGoogle Scholar
  39. 39.
    Sommerfeld, M., Kussin, J.: Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: part II. Integral properties and validation. Int. J. Multiphase Flow 29, 701–718 (2003)zbMATHCrossRefGoogle Scholar
  40. 40.
    Rubinow, S.I., Keller, J.B.: The transverse force on spinning sphere moving in a viscous fluid. J. Fluid Mech. 11, 447–459 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Oesterlé, B., Bui Dinh, T.: Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers. Exp. Fluids 25, 16–22 (1998)CrossRefGoogle Scholar
  42. 42.
    Dennis, S.C.R., Singh, S.N., Ingham, D.B.: The steady flow due to a rotating sphere at low and moderate Reynolds numbers. J. Fluid Mech. 101, 257–279 (1980)zbMATHCrossRefGoogle Scholar
  43. 43.
    Sawatzki, O.: Strömungsfeld um eine rotierende Kugel. Acta Mech. 9, 159–214 (1970)zbMATHCrossRefGoogle Scholar
  44. 44.
    Tang, L., Wen, F., Yang, Y., Crowe, C.T., Chung, J.N., Troutt, T.R.: Self-organizing particle dispersion mechanism in free shear flows. Phys. Fluids A4, 2244–2251 (1992)CrossRefGoogle Scholar
  45. 45.
    Prahl, L., Hölzer, A., Arlov, D., Revstedt, J., Sommerfeld, M., Fuchs, L.: On the interaction between two fixed spherical particles. Int. J. Multiphase Flow 33, 707–725 (2007)CrossRefGoogle Scholar
  46. 46.
    Michaelides, E.E.: Particles, Bubbles & Drops: Their Motion, Heat and Mass Transfer. World Scientific Publishing, Singapore (2006)CrossRefGoogle Scholar
  47. 47.
    Richardson, J.F., Zaki, W.N.: Sedimentation and fluidisation: part I. Trans. Inst. Chem. Eng. 32, 35–53 (1954)Google Scholar
  48. 48.
    Di Felice, R.: The voidage function for fluid-particle interaction systems. Int. J. Multiphase Flow 29, 153–159 (1994)zbMATHCrossRefGoogle Scholar
  49. 49.
    Wen, C.Y., Yu, Y.H.: Mechanics of fluidisation. AICHE J. 62, 100–111 (1966)Google Scholar
  50. 50.
    Beetstra, R., van der Hoef, M.A., Kuipers, J.A.M.: Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres. AICHE J. 53, 489–501 (2007)CrossRefGoogle Scholar
  51. 51.
    Ergun, S.: Fluid flow through packed columns. Chem. Eng. Sci. 48, 89–98 (1952)Google Scholar
  52. 52.
    Schmalfuß, S., Sommerfeld, M.: Numerical and experimental analysis of fluid phase resonance mixers. Chem. Eng. Sci. 173, 570–577 (2017)CrossRefGoogle Scholar
  53. 53.
    Schmalfuß, S., Sommerfeld, M.: Importance of the different fluid forces on particle dispersion in fluid-phase resonance mixers. In: 12th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries, SINTEF, Trondheim, Norway, 30.05 – 01.06 (2017)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Mechanische Verfahrenstechnik, AG MehrphasenströmungenOtto-von-Guericke Universität MagdeburgHalle (Saale)Deutschland

Section editors and affiliations

  • Dieter Mewes
    • 1
  1. 1.Institut für VerfahrenstechnikLeibniz Universität HannoverHannoverDeutschland

Personalised recommendations