Advertisement

VDI-Wärmeatlas pp 1147-1180 | Cite as

J5 Spontane Kondensation und Aerosolbildung

  • Friedrich Ehrler
  • Karlheinz SchaberEmail author
Chapter
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Literatur

  1. 1.
    Volmer, M.: Kinetik der Phasenbildung. Theodor Steinkopff, Dresden/Leipzig (1939)Google Scholar
  2. 2.
    Hinds, W.C.: Aerosol Technology. Wiley, New York (1982)Google Scholar
  3. 3.
    Friedlander, S.K.: Smoke, Dust and Haze. Oxford University Press, New York (2000)Google Scholar
  4. 4.
    Colburn, A.P., Edison, A.G.: Prevention of fog in cooler-condensers. Ind. Eng. Chem. 33, 457–458 (1941)CrossRefGoogle Scholar
  5. 5.
    Bier, K., Ehrler, F., Treffinger, P., Wright, W.: Spontane Kondensation übersättigter reiner Dämpfe in Nebelkammern. Fortschr.-Ber. VDI, R. 7, Nr. 278. VDI-Verlag, Düsseldorf (1995)Google Scholar
  6. 6.
    Ehrler, F., Repple, K.H., Schüßler, J., Treffinger, P., Wright, W.: Special cloud chambers for investigations into the time-behaviour of homogeneously nucleated spontaneous condensation. Exp. Fluids 21, 363–373 (1996)CrossRefGoogle Scholar
  7. 7.
    Hechler, C.: Untersuchungen zur spontanen Kondensation in übersättigten Strömungen von Wasserdampf und Entwicklung eines Streulichtverfahrens zur Bestimmung der Tropfengröße und -konzentration. Dissertation, University of Karlsruhe (TH) (1988)Google Scholar
  8. 8.
    Wegener, P.P.: Gasdynamics of expansion flows with condensation and homogeneous nucleation of water vapor. In: Wegener, P.P. (Hrsg.) Nonequilibrium Flows, 1. Aufl., S. 163–243. Marcel Dekker Inc., New York (1969)zbMATHGoogle Scholar
  9. 9.
    Zettlemoyer, A.C., Overbeek, J.T.G.: Nucleation Phenomena. Special Issue of Advance in Colloid and Interface Science, Bd. 7. Elsevier Publishing Comp., Amsterdam/Niederlande (1977)Google Scholar
  10. 10.
    Oxtoby, D.W.: Homogeneous nucleation: theory and experiment. J. Phys. Condens. Matter 4, 7627–7650 (1992)CrossRefGoogle Scholar
  11. 11.
    Vehkamäki, H.: Classical Nucleation Theory in Multicomponent Systems. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  12. 12.
    Feder, J., Russell, K.C., Lothe, J., Pound, G.M.: Homogeneous nucleation and growth of droplets in vapours. Adv. Phys. 15, 111–178 (1966)CrossRefGoogle Scholar
  13. 13.
    Strey, R., Wagner, P.E., Viisanen, Y.: The problem of measuring homogeneous nucleation rates and the molecular contents of nuclei: progress in the form of nucleation pulse measurements. J. Phys. Chem. 98, 7748–7758 (1994)CrossRefGoogle Scholar
  14. 14.
    Hagen, D.E., Kassner, J.L.: Homogeneous nucleation rate for water. J. Chem. Phys. 81, 1416–1418 (1984)CrossRefGoogle Scholar
  15. 15.
    Schmitt, J.L., Adams, G.W., Zalabsky, R.A.: Homogeneous nucleation of ethanol. J. Chem. Phys. 77, 2089–2097 (1982)CrossRefGoogle Scholar
  16. 16.
    Adams, G.W., Schmitt, J.L., Zalabsky, R.A.: The homogeneous nucleation of nonane. J. Chem. Phys. 81, 5074–5078 (1984)CrossRefGoogle Scholar
  17. 17.
    Sharaf, M.A., Dobbins, R.A.: A comparison of measured nucleation rates with the predictions of several theories of homogeneous nucleation. J. Chem. Phys. 77, 1517–1526 (1982)CrossRefGoogle Scholar
  18. 18.
    Peters, F., Paikert, B.: Nucleation and growth rates of homogeneously condensing water vapor in argon from shock tube experiments. Exp. Fluids 7, 521–530 (1989). Meier, G.E.A., Thompson, P.A. (Hrsg.) Dieselben: Adiabatic Waves in Liquid-Vapor Systems, S. 217–226. Springer, Berlin (1990)CrossRefGoogle Scholar
  19. 19.
    Bier, K., Ehrler, F., Kissau, G., Lippig, V., Schorsch, R.: Homogene Spontankondensation in expandierenden Dampfstrahlen des Kältemittels R 22 bei hohen normierten Drücken. Forsch. Ing.-Wes. 43, 165–175 (1977)CrossRefGoogle Scholar
  20. 20.
    Gyarmathy, G., Meyer, H.: Spontane Kondensation. VDI-Forschungsheft 508. VDI-Verlag, Düsseldorf (1965)Google Scholar
  21. 21.
    Hedbäck, A.J.W.: Theorie der spontanen Kondensation in Düsen und Turbinen. Mitteilungen Institut für Thermische Turbomaschinen. Juris-Verl., Zürich (1982)Google Scholar
  22. 22.
    Bier, K., Ehrler, F., Theis, G.: Spontaneous condensation in stationary nozzle flow of carbon dioxide in a wide range of density. In: Meier, G.E.A., Thompson, P.A. (Hrsg.) Proceedings IUTAM Symposium Göttingen 1989: Adiabatic Waves in Liquid-Vapor Systems, S. 129–141. Springer, Berlin (1990)Google Scholar
  23. 23.
    Bier, K., Ehrler, F., Theis, G.: Comparison of Spontaneous Condensation in Supersaturated Nozzle Flow of Different Refrigerants. In: Proceedings of the International VDI-Seminar ORC-HP-Technology, Zürich. VDI-Berichte 539. VDI-Verlag, Düsseldorf (1984)Google Scholar
  24. 24.
    Schorsch, R.: Aufbau eines Strömungssystems und Versuche zur homogenen Spontankondensation bei hohen normierten Drücken. Dissertation, University of Karlsruhe (TH) (1976)Google Scholar
  25. 25.
    Niekrawietz, M.: Experimentelle Untersuchungen und Modellrechnungen zur spontanen Kondensation in Düsenströmungen übersättigter Kohlendioxid/Luft-Gemische. Dissertation, University of Karlsruhe (TH) (1989)Google Scholar
  26. 26.
    Wölk, J., Strey, R., Heath, C.H., Wyslouzil, B.E.: Empirical function for homogeneous nucleation rates. J. Chem. Phys. 187, 4954–4960 (2002)CrossRefGoogle Scholar
  27. 27.
    Hale, B.N.: Temperature dependence of homogeneous nucleation rates for water: near equivalence of the empirical fit of Wölk and Strey, and the scaled nucleation model. J. Chem. Phys. 122, 204509 (2005)CrossRefGoogle Scholar
  28. 28.
    Brus, D., Zdimal, V., Uchtmann, H.: Homogeneous nucleation rate measurements in supersaturated water vapour II. J. Chem. Phys. 131, 074507 (2009)CrossRefGoogle Scholar
  29. 29.
    Tolman, R.C.: The effect of droplet size on surface tension. J. Chem. Phys. 17, 333–337 (1949)CrossRefGoogle Scholar
  30. 30.
    Flood, H.: Tröpfchenbildung in übersättigten Äthylalkohol-Wasserdampfgemischen. Z. Phys. Chem. A. 170, 286–294 (1934)Google Scholar
  31. 31.
    Neumann, K., Döring, W.: Tröpfchenbildung in übersättigten Dampfgemischen zweier vollständig mischbarer Flüssigkeiten. Z Phys. Chem. A. 186, 203–226 (1940)Google Scholar
  32. 32.
    Reiss, H.: The kinetics of phase transitions in binary systems. J. Chem. Phys. 18, 840–848 (1950)CrossRefGoogle Scholar
  33. 33.
    Wilemski, G.: Composition of the critical nucleus in multicomponent vapor nucleation. J. Chem. Phys. 80, 1370–1372 (1984)CrossRefGoogle Scholar
  34. 34.
    Kalikmanov, V.I., van Dongen, M.E.H.: Semi-phenomenological kinetic theory of binary nucleation. Europhys. Lett. 29, 129–134 (1995)CrossRefGoogle Scholar
  35. 35.
    Kwauk, X., Debenedetti, P.G.: Mathematical modelling of aerosol formation by rapid expansion of supercritical solutions in converging nozzle. J. Aerosol Sci. 24(4), 445–469 (1993)CrossRefGoogle Scholar
  36. 36.
    Dingenen R van, Raes F: Ternary nucleation of methane sulphonic acid, sulphuric acid and water vapour. J. Aerosol Sci. 24, 1–17 (1993)Google Scholar
  37. 37.
    Schaber, K.: Aerosol formation in absorption processes. Chem. Eng. Sci. 50, 1347–1360 (1995)CrossRefGoogle Scholar
  38. 38.
    Wix, A., Brachert, L., Sinanis, S., Schaber, K.: A simulation tool for aerosol formation during sulphuric acid absorption in a gas cleaning process. J. Aerosol Sci. 41, 1066–1079 (2010)CrossRefGoogle Scholar
  39. 39.
    Yue, G.K., Hamill, P.: The homogeneous nucleation of H2SO4–H2O aerosol particles in air. J. Aerosol Sci. 10, 609–614 (1979)CrossRefGoogle Scholar
  40. 40.
    Mirabel, P., Clavelin, J.L.: Experimental study of nucleation in binary mixtures: The nitric acid-water and the sulphuric-water systems. J. Chem. Phys. 68, 5020–5025 (1978)CrossRefGoogle Scholar
  41. 41.
    Kulmala, M., Laaksonen, A.: Binary nucleation of water-sulphuric acid system: Comparison of classical theories with different H2SO4 saturation vapor pressures. J. Chem. Phys. 93, 696–701 (1990)CrossRefGoogle Scholar
  42. 42.
    Junge, C.E.: Atmospheric chemistry. Adv. Geophys. 4, 1–44 (1958)CrossRefGoogle Scholar
  43. 43.
    Ehrig, R., Ofenloch, O., Schaber, K., Deuflhard, P.: Modelling and simulation of aerosol formation by heterogeneous nucleation in gas-liquid contact devices. Chem. Eng. Sci. 57(7), 1151–1163 (2002)CrossRefGoogle Scholar
  44. 44.
    Schaber, K., Körber, J., Ofenloch, O., Ehrig, R., Deuflhard, P.: Aerosol formation in gas-liquid contact devices – nucleation, growth and particle dynamics. Chem. Eng. Sci. 57, 4345–4356 (2002)CrossRefGoogle Scholar
  45. 45.
    Ofenloch, O.: Entstehung und Verhalten von Aerosolen in Gaswaschanlagen. Fortschritt-Berichte VDI, Reihe 3, Nr. 832. VDI-Verlag, Düsseldorf 2005Google Scholar
  46. 46.
    Wix, A.: Theroretische und experimentelle Untersuchungen zur homogenen und heterogenen Nukleation bei der Säureabsorption in Gas-Flüssigkeits-Kontaktapparaten. Fortschritt-Berichte. VDI 3, 894. VDI-Verlag (2008)Google Scholar
  47. 47.
    Gretscher, H., Schaber, K.: Aerosol formation by heterogenous nucleation in wet scrubbing processes. Chem. Eng. Process 38, 541–548 (1999)CrossRefGoogle Scholar
  48. 48.
    Wegener, P.P., Mack, M.: Condensation in supersonic and hypersonic wind tunnels. Adv. Appl. Mech. 5, 307–447 (1958)zbMATHCrossRefGoogle Scholar
  49. 49.
    Buckle, E.R., Pouring, A.A.: Effects of seeding on the condensation of atmospheric moisture in nozzles. Nature 208, 367–369 (1965)CrossRefGoogle Scholar
  50. 50.
    Dibelius, G., Mertens, K., Pitt, R.: Untersuchungen über die Kondensation in Turbinen zur Trennung von Gasgemischen. VDI-Berichte Nr. 487, S 137–150 (1983)Google Scholar
  51. 51.
    Oswatitsch, K.: Kondensationserscheinungen in Überschalldüsen. ZAMM. 22, 1–14 (1942)CrossRefGoogle Scholar
  52. 52.
    Gyarmathy, G.: Zur Wachstumsgeschwindigkeit kleiner Flüssigkeitströpfchen in einer übersättigten Atmosphäre. ZAMP. 14, 280–293 (1963)zbMATHGoogle Scholar
  53. 53.
    Young, J.B.: The condensation and evaporation of liquid droplets in a pure vapour at arbitrary Knudsen number. Int. J. Heat Mass Transf. 34, 1649–1661 (1991)CrossRefGoogle Scholar
  54. 54.
    Young, J.B.: The condensation and evaporation of liquid droplets at arbitrary Knudsen number in the presence of an inert gas. Int. J. Heat Mass Transf. 36, 2941–2996 (1993)zbMATHCrossRefGoogle Scholar
  55. 55.
    Peters, F., Paikert, B.: Measurement and interpretation of monodispersed droplets in a shock tube. Int. J. Heat Mass Transf. 37, 293–302 (1994)CrossRefGoogle Scholar
  56. 56.
    Peters, F., Meyer, K.A.J.: Measurement and interpretation of growth of monodispersed droplets suspended in pure vapor. Int. J. Heat Mass Transf. 38, 3285–3293 (1995)CrossRefGoogle Scholar
  57. 57.
    Vesala, T., Kulmala, M., Rudolf, R., Vrtala, A., Wagner, P.E.: Models for condensational growth and evaporation of binary aerosol particles. J. Aerosol Sci. 28, 565–598 (1997)CrossRefGoogle Scholar
  58. 58.
    Schnerr, G.: Homogene Kondensation in stationären transsonischen Strömungen durch Lavaldüsen und um Profile. Universität Karlsruhe (TH), Habilitationsschrift (1986)Google Scholar
  59. 59.
    Schnerr, G.: 2-D transonic flow with energy supply by homogeneous condensation: Onset condition and 2-D structure of steady nozzle flow. Exp. Fluids 7, 145–156 (1989)CrossRefGoogle Scholar
  60. 60.
    Schnerr, G.H.: Transsonic aerodynamics including strong effects from heat addition. Comput. Fluid. 22(2), 103–106 (1993)CrossRefGoogle Scholar
  61. 61.
    Leidner, P.: Numerische Untersuchung transsonischer Strömungen realer Gase. Fortschr.-Ber. VDI, R. 7, Nr. 288. VDI-Verlag, Düsseldorf (1996)Google Scholar
  62. 62.
    Avetissian, A.R., Philippov, G.A., Zaichik, L.I.: Effects of turbulence and inlet moisture on two-phase spontaneously condensing flows in transonic nozzles. Int. J. Heat Mass Transf. 51, 4195–4203 (2008)zbMATHCrossRefGoogle Scholar
  63. 63.
    Ma, Q.-F., Hu, D.-P., Jiang, J.-S., Qiu, Z.-H.: A turbulent Eulerian multi-fluid model for homogeneous nucleation of water vapour in transonic flow. Int. J. Comput. Fluid Dyn. 23(3), 221–231 (2009)zbMATHCrossRefGoogle Scholar
  64. 64.
    Yang, Y., Shen, S.: Numerical simulation on non-equilibrium spontaneous condensation in supersonic steam flow. Int. Commun. Heat Mass Transf. 36, 902–907 (2009)CrossRefGoogle Scholar
  65. 65.
    Ludwig, A.: Untersuchung zur spontanen Kondensation von Wasserdampf bei stationärer Überschallströmung unter Berücksichtigung des Realgasverhaltens. Dissertation University of Karlsruhe (TH) (1975)Google Scholar
  66. 66.
    Zierep, J.: Strömungen mit Energiezufuhr. G. Braun, Karlsruhe (1990)zbMATHGoogle Scholar
  67. 67.
    Gyarmathy, G.: Kondensationsstoß-Diagramme für Wasserdampfströmungen. Forsch. Ing.-Wes. 29, 105–114 (1963)CrossRefGoogle Scholar
  68. 68.
    Barschdorff, D.: Verlauf der Zustandsgrößen und gasdynamische Zusammenhänge bei der spontanen Kondensation reinen Wasserdampfes in Laval-Düsen. Forsch. Ing.-Wes. 37, 146–157 (1971)CrossRefGoogle Scholar
  69. 69.
    Schmidt, B.: Beobachtungen zum Verhalten der durch Wasserdampf ausgelösten Störungen in einer Überschall-Windkanaldüse. Jahrbuch WGLR, S. 160 (1962)Google Scholar
  70. 70.
    Wegener, P.P., Cagliostro, D.J.: Periodic nozzle flow with heat addition. Combust. Sci. Technol. 6, 269 (1973)CrossRefGoogle Scholar
  71. 71.
    Mundinger, G.: Numerische Simulation instationärer Lavaldüsenströmungen mit Energiezufuhr durch homogene Kondensation. Dissertation, University of Karlsruhe (TH) (1994)Google Scholar
  72. 72.
    Adam, S.: Numerische und experimentelle Untersuchung instationärer Düsenströmungen mit Energiezufuhr durch homogene Kondensation. Dissertation Fakultät Maschinenbau, University of Karlsruhe (TH) (1996)Google Scholar
  73. 73.
    Adam, S., Schnerr, G.H.: Instabilities and bifurcation of non-equilibrium two-phase flows. J. Fluid Mech. 348, 1–28 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Hausmann, G.: Untersuchung zur Laval-Düsenströmung von Wasserdampf mit unterkühltem Ruhezustand. Dissertation, University of Karlsruhe (TH) (1976)Google Scholar
  75. 75.
    Bender, E.: Die Berechnung von Phasengleichgewichten mit der thermischen Zustandsgleichung. Ruhr-Univ. Bochum, Habilitationsschrift (1971)Google Scholar
  76. 76.
    Theis, G.: Spontankondensation in übersättigten Dampfströmungen von Kohlendioxid und Difluordichlormethan. Dissertation University of Karlsruhe (TH) (1985)Google Scholar
  77. 77.
    Sander, A., Damköhler, G.: Übersättigung bei der spontanen Keimbildung in Wasserdampf. Naturwissenschaften 31, 460–465 (1943)CrossRefGoogle Scholar
  78. 78.
    Cwilong, B.M.: Sublimation in a Wilson-Chamber. (a) Nature 155, 361–362, (b) (1947) Proc Roy Soc (London) A 190, 137–143 (1945)Google Scholar
  79. 79.
    Fournier d’Albe, E.M.: Condensation of water vapour below 0 °C. Nature 162, 921–922 (1948)Google Scholar
  80. 80.
    Anderson, R.J., Miller, R.C., Kassner, J.L., Hagen, D.E.: A study of homogeneous condensation-freezing nucleation of small water droplets in an expansion cloud chamber. J. Atmos. Sci. 37, 2508–2520 (1980)CrossRefGoogle Scholar
  81. 81.
    Zander, M.: Anlagen für Druck-, Volumen- und Temperaturmessungen an reinen fluiden Stoffen und ihre Anwendung auf Difluormonochlormethan. Dissertation, TH Braunschweig (1968)Google Scholar
  82. 82.
    York, C.M.: Cloud chambers. In: Flügge (Hrsg.) Handb. d. Physik, Bd. 45, S. 260–313. Springer, Berlin/Göttingen/Heidelberg (1959)Google Scholar
  83. 83.
    Wilson, J.G.: The Principles of Cloud Chamber Technique. University Press, Cambridge (1951)Google Scholar
  84. 84.
    Oertel, H.: Stoßrohre. Springer, Wien/New York (1966)Google Scholar
  85. 85.
    Powell, C.F.: Condensation phenomena at different temperatures. Proc. Roy. Soc. Lond. A. 119, 553–577 (1928)CrossRefGoogle Scholar
  86. 86.
    Frey, F.: Über die Kondensation von Dämpfen in einem Trägergas. Z. Phys. Chem. B. 49, 83–101 (1941)Google Scholar
  87. 87.
    Maushart, R., Pollermann, M.: Messung des Temperaturverlaufs während der Expansion wasserdampfgesättigter Luft. Z Elektroch. 59, 455–460 (1955)Google Scholar
  88. 88.
    Wright, W.: Zum Einfluß der Entspannungsgeschwindigkeit auf die spontane Kondensation übersättigter Dämpfe. Dissertation, University of Karlsruhe (TH) (1993)Google Scholar
  89. 89.
    Peters, F.: A new method to measure homogeneous nucleation rates in shock tubes. Exp. Fluids 1, 143–148 (1983)CrossRefGoogle Scholar
  90. 90.
    Wu, B.J.C.: Analysis of condensation in the centered expansion wave in a shock tube. In: Pouring, A.A. (Hrsg.) Condensation in High Speed Flows, Symposium at Yale University, New Haven, Conn., June 15–17, S. 73–82. ASME Publication, New York (1977)Google Scholar
  91. 91.
    Lee, C.F.: Condensation of H2O and D2O in Argon in the centered expansion wave in a shock tube. In: Povring, A.A. (Hrsg.) Condensation in High Speed Flows, Symposium at Yale University, New Haven, Conn., June 15–17, S. 83–96. ASME Publication, New York (1977)Google Scholar
  92. 92.
    Barschdorff, D.: Carrier gas effects on homogeneous nucleation of water vapor in a shock tube. Phys. Fluids 18, 529–535 (1975)CrossRefGoogle Scholar
  93. 93.
    Wegener, P.P., Lee, C.F.: Condensation by homogeneous nucleation of H2O, C6H6, CCl4 and CCl3F in a shock tube. J. Aerosol Sci. 4, 29–37 (1983)CrossRefGoogle Scholar
  94. 94.
    Paikert, B.: Untersuchung der Kondensation und Verdampfung ruhender Tropfen in Gas-Dampf-Gemischen mit Hilfe eines Stoßwellenrohres. Dissertation, University of Essen (1990)Google Scholar
  95. 95.
    Patwardhan, V.S.: Condensation of saturated vapours on isentropic compression: a simple criterion. Heat Recovery Syst. CHP. 7, 395–399 (1987)CrossRefGoogle Scholar
  96. 96.
    Thompson, P.A., Sullivan, D.A.: On the possibility of complete condensation shock waves in retrograde fluids. J. Fluid Mech. 70, 639–649 (1975)CrossRefGoogle Scholar
  97. 97.
    Dettleff, G., Thompson, P.A., Meier, G.E.A., Speckmann, H.-D.: An experimental study of liquefaction shock waves. J. Fluid Mech. 95, 279–304 (1979)CrossRefGoogle Scholar
  98. 98.
    Gülen, S.C.: On the possibility of shock-induced condensation in the thermodynamically unstable region. J. Non-Equilib. Thermodyn. 19, 375–393 (1994)CrossRefGoogle Scholar
  99. 99.
    Chmielewski, T., Sherman, P.M.: Effect of a carrier-gas on homogeneous condensation in a supersonic nozzle. AIAA J. 8, 789–793 (1970)CrossRefGoogle Scholar
  100. 100.
    Kuan, B.T., Witt, P.J.: Modelling supersonic quenching of magnesium vapour in a Laval nozzle. Chem. Eng. Sci. 87, 23–29 (2013)CrossRefGoogle Scholar
  101. 101.
    Frank, W.: Condensation phenomena in supersonic nozzles. Acta Mech. 54, 135–156 (1985)CrossRefGoogle Scholar
  102. 102.
    Wu, B.J.C., Wegener, P.P., Stein, G.D.: Condensation of sulfur hexafluoride in steady supersonic nozzle flow. J. Chem. Phys. 68, 308–318 (1978)CrossRefGoogle Scholar
  103. 103.
    Dawson, D.B.: Condensation of Supersaturated Organic Vapors in a Supersonic Nozzle. M. Sc. Thesis, Massachusetts Institute of Technology (1967)Google Scholar
  104. 104.
    Dawson, D.B., Willson, E.J., Hill, P.G., Russell, K.C.: Nucleation of supersaturated vapors in nozzles, II. C6H6, CHCl3, CCl3F, C2H5OH. J. Chem. Phys. 51, 5389–5397 (1969)CrossRefGoogle Scholar
  105. 105.
    Jaeger, H.L.: Condensation of Supersaturated Ammonia and Water Vapor in Supersonic Nozzles. M. Sc. Thesis, Massachusetts Institute of Technology (1966)Google Scholar
  106. 106.
    Jaeger, H.L., Willson, E.J., Hill, P.G., Russell, K.C.: Nucleation of supersaturated vapors in nozzles, I. H2O and NH3. J. Chem. Phys. 51, 5380–5388 (1969)CrossRefGoogle Scholar
  107. 107.
    Treffinger, P., Ehrler, F., Bier, K. Spontane Kondensation in Überschallströmungen. Fortschr.-Ber. VDI, R. 7, Nr. 251. VDI-Verlag, Düsseldorf (1994)Google Scholar
  108. 108.
    Hale, B.N.: Application of a scaled homogeneous nucleation rate formalism to experimental data at T ≪ Tc. Phys. Rev. A. 33, 4156–4163 (1986)CrossRefGoogle Scholar
  109. 109.
    Hale, B.N.: Scaled models for nucleation. In: Wagner, P.E., Valir, G. (Hrsg.) Lecture Notes in Physics 509, Atmospheric Aerosols and Nucleation. Proceedings, S. 323–340. Springer, Wien (1988)Google Scholar
  110. 110.
    Hagena, O.F.: Condensation in free jets: comparison of rare gases and metals. Z. Phys. D: At., Mol. Clusters 4, 291 (1987)CrossRefGoogle Scholar
  111. 111.
    Renner, T.A., Kucera, G.H., Blander, M.: A Study of Hydrogen Bonding in Methanol Vapour by Measurement of Thermal Conductivity. J. Chem. Phys. 66, 177–184 (1977)CrossRefGoogle Scholar
  112. 112.
    Strey, R., Wagner, P.E., Schmeling, T.: Homogeneous nucleation rates for n-Alcohol vapours measured in a two-piston expansion chamber. J. Chem. Phys. 84, 2325 (1986)CrossRefGoogle Scholar
  113. 113.
    Helbling, J.: Untersuchungen zur partiellen Kondensation in Strömungen binärer Gemische bei niedriger Gasdichte. Dissertation, University of Karlsruhe (TH) (1988)Google Scholar
  114. 114.
    Wegener, P.P., Pouring, A.A.: Experiments on condensation of water vapor by homogeneous nucleation in nozzles. Phys. Fluids 7, 352–361 (1964)CrossRefGoogle Scholar
  115. 115.
    Treffinger, P.: Untersuchungen zur spontanen Kondensation übersättigter Dämpfe. Dissertation, University of Karlsruhe (TH) (1994)Google Scholar
  116. 116.
    Delale, C.F., Schnerr, G.H., Zierep, J.: Asymptotic solution of transonic nozzle flows with homogeneous condensation. I. Subcritical flows. Phys. Fluids A. 5, 2969–2981 (1993)zbMATHCrossRefGoogle Scholar
  117. 117.
    Delale, C.F., Schnerr, G.H., Zierep, J.: Asymptotic solution of transonic nozzle flows with homogeneous condensation. II. Supercritical flows. Phys. Fluids A. 5, 2982–2995 (1993)zbMATHCrossRefGoogle Scholar
  118. 118.
    Moses, C.A., Stein, G.D.: On the growth of droplets formed in a Laval-Nozzle using both static pressure and light-scattering measurements. Trans. ASME, J Fluids Eng. 100, 311–322 (1978)CrossRefGoogle Scholar
  119. 119.
    Schnerr, G.H., Bohning, R., Breitling, T., Jantzen, H.-A.: Compressible turbulent boundary layers with heat addition by Homogeneous Condensation. AIAA J. 30, 1284–1289 (1992)CrossRefGoogle Scholar
  120. 120.
    Steinmeyer, D.E.: Fog formation in partial condensers. Chem. Eng. Prog. 68, 64–68 (1972)Google Scholar
  121. 121.
    Amelin, A.G.: Theory of Fog Condensation. Israel program for scientific translations, Jerusalem (1967)Google Scholar
  122. 122.
    Ulbrich, M., Sachweh, B., Meckl, S., Schraut, A., Hölemann, K.: Aerosolbildung in Absorptionsprozessen – Ursachen und Lösungsansätze. Chem. Ing. Tech. 71, 52–61 (1999)CrossRefGoogle Scholar
  123. 123.
    Haep, S.: Bildung und Wachstum von Aerosolen unter Bedingungen der nassen Rauchgasreinigung. VDI-Fortschritt-Berichte, Reihe 3, Nr. 641. VDI-Verlag, Düsseldorf (2000)Google Scholar
  124. 124.
    Brosig, G.: Untersuchung von HCl-Nebeln in technischen Gasreinigungsanlagen. Fortschritt-Berichte VDI Reihe 3, Nr. 903. VDI-Verlag. ISBN 978-3-18-390 303-0 (2009)Google Scholar
  125. 125.
    Manthey, A.: Bildung und Verhalten von Nebel in einem Rohrbündelkondensator. Dissertation, University of Karlsruhe (TH) (2000)Google Scholar
  126. 126.
    Brouwers, H.J.H., Chesters, A.K.: Film models for transport phenomena with fog formation: the classical film model. Int. J. Heat Mass Transf. 35, 1–11 (1992)zbMATHCrossRefGoogle Scholar
  127. 127.
    Toor, H.L.: Fog vaporization and condensation in boundary value problems. Ind. Eng. Chem. Fundam. 10, 121–131 (1971)CrossRefGoogle Scholar
  128. 128.
    Brouwers, H.J.H.: Film models for transport phenomena with fog formation: the fog film model. Int. J. Heat Mass Transf. 35, 13–28 (1992)zbMATHCrossRefGoogle Scholar
  129. 129.
    Rosner, D.E.: Enhancement of diffusion-limited vaporization rates by condensation within the thermal boundary layer. Int. J. Heat Mass Transf. 10, 1267–1279 (1967)CrossRefGoogle Scholar
  130. 130.
    Kaufmann, S., Lorentz, Y., Hilfiker, K.: Prevention of fog in a condenser by simultaneous heating and cooling. Heat Mass Transf. 32, 403–410 (1997)CrossRefGoogle Scholar
  131. 131.
    Manthey, A., Schaber, K.: The formation and behavior of fog in a tube bundle condenser. Int. J. Therm. Sci. 39, 1004–1014 (2000)CrossRefGoogle Scholar
  132. 132.
    Mall-Gleißle, S.: Entstehung von Aerosolen bei der Kondensation und Verdampfung. Fortschritt-Berichte VDI, Reihe 3, Nr. 891. VDI-Verlag. ISBN 978-3-18-389 103-0 (2008)Google Scholar
  133. 133.
    Mall-Gleißle, S., Schaber, K.: Aerosolbildung in Kondensatoren. Chem. Ing. Tech. 75, 1621–1624 (2003)CrossRefGoogle Scholar
  134. 134.
    Housiadas, C., Papanicolaou, E., Drossinos, Y.: Combined heat and mass transfer in laminar flow diffusion nucleation chambers. J. Aerosol Sci. 33, 797–816 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.KarlsbadDeutschland
  2. 2.Institut für Technische Thermodynamik und Kältetechnik ITTKKarlsruher Institut für Technologie (KIT)KarlsruheDeutschland

Section editors and affiliations

  • Stephan Kabelac
    • 1
  1. 1.Institut für ThermodynamikLeibniz Universität HannoverHannoverDeutschland

Personalised recommendations