Advertisement

VDI-Wärmeatlas pp 1015-1060 | Cite as

H3.6 Strömungssieden – Kritische Siedezustände

  • Oliver HerbstEmail author
Chapter
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Literatur

  1. 1.
    Cumo, M., Palazzi, G., Urbani, G.C.: On the Limiting Critical Quality and the „Deposition Controlled“ Burnout. CNEN-RT/ING, Bd. 4(79), Rome, Italy, (1979)Google Scholar
  2. 2.
    Drescher, G., Köhler, W.: Die Ermittlung kritischer Siedezustände im gesamten Dampfgehaltsbereich für innendurchströmte Rohre. BWK. 33(10), 416–422 (1981)Google Scholar
  3. 3.
    Doroshchuk, V.E., Levitan, L.L., Lantsmann, F.P.: Recommendations for calculating burnout in a round tube with uniform heat release. Teploenergetika 22(12), 66–70 (1975)Google Scholar
  4. 4.
    Academy of Sciences, USSR: Tabular data for calculating burnout when boiling water in uniformly heated round tubes. Therm. Eng. 23(9), 77–79 (1977)Google Scholar
  5. 5.
    Kon’kov, A.S.: Experimental study of the conditions under which heat exchange deteriorates when a steam water mixture flows in heated tubes. Teploenergetika 13(12), 77 (1965)Google Scholar
  6. 6.
    Groeneveld, D.C., Shan, J.Q., et al.: The 2005 CHF LOOK-UP TABLE. NURETH-11, paper 166, October 2–6, 2005. Avignon (2005)Google Scholar
  7. 7.
    Groeneveld, D.C., Cheng, S.C., Doan, T.: AECL-UO critical heat flux look-up table. Heat Transf. Eng. 7(1–2), 46–62 (1986)Google Scholar
  8. 8.
    Köhler, W., Herbst, O., Kastner, W.: Thermal-Hydraulic behavior of a safety condenser. In: Proceedings of the International Conference on New Trends in Nuclear System Thermo-Hydraulics, Vol. I, 30 May–2 June. Pisa (1994)Google Scholar
  9. 9.
    Cumo, M., Fabrizi, F., Palazzi, G.: The Influence of Inclination on CHF in Steam Generators Channels. CNEN-RT/ING, Bd. 11(78), Rome, Italy, (1978)Google Scholar
  10. 10.
    Merilo, M.: Critical heat flux experiments in a vertical and horizontal tube with both Freon-12 and Water as coolant. Nucl. Eng. Des. 44, 1–16 (1977)Google Scholar
  11. 11.
    Chojnowski, B., Wilson, P.W., Whitcutt, R.D.B.: Critical heat flux in inclined steam generating tubes. Symposium Multiphase Flow Systems, University Strathelyde Paper E 3. Institution of Chemical Engineers Symposium Series 38 (1974)Google Scholar
  12. 12.
    Watson, G., Lee, R.A., Wiener, M.: Critical heat flux in inclined and vertical smooth and ribbed tubes. Paper B 6.8. 5th International Heat Transfer Conference, Tokyo (1974)Google Scholar
  13. 13.
    Kefer, V.: Strömungsformen und Wärmeübergang in Verdampferrohren unterschiedlicher Neigung. Dissertation, Technical University of München (1989)Google Scholar
  14. 14.
    Ünal, H.C.: Some aspects of two-phase flow heat transfer and dynamic instabilities in medium and high pressure steam generators. Dissertation, Technische Hochschule Delft (1981)Google Scholar
  15. 15.
    Roumy, R: Dryout in Helically Coiled Tubes with Boiling Freon 12. European Two-Phase Flow Group Meeting, Copenhagen (1971)Google Scholar
  16. 16.
    Campolunghi, F., Cumo, M., Ferrari, G., Palazzi, G.: Full Scale Tests and Thermal Design Correlations for Coiled Once-Through Steam Generators. CNEN-RT/ING, Bd. (75):11, Rome, Italy, (1975)Google Scholar
  17. 17.
    Cumo, M., Farello, G.E., Ferrari, G.: The influence of curvature in post dryout heat transfer. Int. J. Heat Mass Transf. 15, 2045–2062 (1972)Google Scholar
  18. 18.
    Naitoh, M., Nakamura, A., Ogasawara, H.: Dryout in helically coiled tube of sodium heated steam generator. ASME 74-WA/HT-48 (1974)Google Scholar
  19. 19.
    Duchatelle, L., De Nucheze, L., Robin, M.G.: Departure from nucleate boiling in helical tubes of liquid metal heated steam generators. ASME 73-HT-57 (1973)Google Scholar
  20. 20.
    Ünal, H.C., van Gasselt, M.L.G., van T'Verlaat, P.M.: Dyrout and two-phase flow pressure drop in sodium heated helically coiled steam generators tubes at elevated pressures. Int. J. Heat Mass Transf. 24, 285–298 (1981)Google Scholar
  21. 21.
    Miropol’skiy, Z.L., Pikus, V.Y.: Critical boiling heat fluxes in curved channels. Heat Tran. Sov. Res. 1(1), 74–79 (1969)Google Scholar
  22. 22.
    Babarin, V.P., Sevat’yanov, R.I., Alad’yev, I.T., Khudyakow, V.F., Tzachev, V.A.: Critical heat flux in tubular coils. Heat Transf. Sov. Res. 3(4), 85–90 (1971)Google Scholar
  23. 23.
    Alad’yev, I.T., Petrov, C.I., Rzayev, A.I., Khudyakov, V.F.: Heat transfer in a sodium-potassium heat exchanger (potassium boiler) made of helically-coiled tubes. Heat Tran. Soviet Res. 8(3), 1–16 (1976)Google Scholar
  24. 24.
    Butterworth, D.: A Model for Predicting Dryout in a Tube with a Circumferential Variation in Heat Flux. AERE-M 2436, Harwell (1971)Google Scholar
  25. 25.
    Cumo, M., Palazzi, G., Urbani, G., Frazolli, F.V.: Full Scale Tests on Axial Profile Heat Flux. Influence on the Critical Quality in PWR Steam Generators. CNEN-RT/ING, Bd. 5(80), Rome, Italy, (1980)Google Scholar
  26. 26.
    Cocilovo, M., Cumo, M., Palazzi, G.: On DNB Location with Axially Disuniform Heat Flux. CNEN-RT/ING, Bd. 21(79), Rome, Italy, (1979)Google Scholar
  27. 27.
    Doroshchuk, C.E., Levitan, L.L. et al.: Investigations into Burnout mechanism in steam-generating tubes. Paper FB-21. In: 6th International Heat Transfer Conference, Toronto, 7–11 Aug 1978Google Scholar
  28. 28.
    Peskov, O.L., Remizoo, O.V., Sudnitsyn, O.A.: Some features of heat transfer burnout in tubes with non-uniform axial heat flux distribution. Paper NR-10. 6th International Heat Transfer Conference, Toronto, 7–11 Aug 1978Google Scholar
  29. 29.
    Keeys, R.K.F., Ralph, I.C., Roberts, D.N.: Post-burnout heat transfer in high pressure steam-water mixtures in an tube with cosine heat flux distribution. Progr. Heat Mass Transf. 6, 99–118 (1972)Google Scholar
  30. 30.
    Becker, K.M., Letzter, A.: Burnout measurements for flow of water in an annulus with two-sided heating. KTH-NEL-23. European Two-Phase Flow Group Meeting, Haifa (1975)Google Scholar
  31. 31.
    Cheng, X., Müller, U.: Review on Critical Heat Flux in Water Cooled Reactors. Forschungszentrum Karlsruhe GmbH, FZKA 6825, Institut für Kern- und Energietechnik, Karlsruhe (2003)Google Scholar
  32. 32.
    Zernick, W., Currin, H.B., Elyash, E., Previti, G.: THINC, A Thermal Hydrodynamic Interaction Code for a Semi-Open or Closed Channel Core. WCAP-3704, Atomic Power Div., Pittsburgh, USA, (1962)Google Scholar
  33. 33.
    Chelemer, H., Weismann, J., Tong, L.S.: Subchannel Thermal Analysis of Rod Bundle Core. WCAP-7014, Atomic Power Div., Pittsburgh, USA, (1967)Google Scholar
  34. 34.
    Bowring, R.W.: HAMBO – A Computer Program for the Subchannel Analysis of the Hydraulic and Burnout Characteristics of Rod Clusters. AEEW R 524 (1967)Google Scholar
  35. 35.
    Rowe, D.S.: Crossflow Mixing Between Parallel Flow Channels During Boiling. Part 1: COBRA – Computer Program for Coolant Boiling. BNWL-371 Part 1 (1967)Google Scholar
  36. 36.
    Rowe, D.S.: COBRA IIIC: A Digital Computer Program for Steady State and Transient Thermal-Hydraulic Analysis of Rod Bundle Nuclear Fuel Elements. BNWL-1965 (1973)Google Scholar
  37. 37.
    Hochreiter, L.E., Chelemer, H.: Application of the THINC-IV Program to PWR Design. WCAP-8195 (1973)Google Scholar
  38. 38.
    Ulrych, G.: Strömungsvorgänge mit unterkühltem Sieden in Brennstabbündeln wassergekühlter Kernreaktoren. Dissertation, TU Braunschweig (1976)Google Scholar
  39. 39.
    Burtak, F., Heinecke, J., Glück, M., Kronenberg, J., Kollmann, T.: Advanced Thermal Hydraulic Core and Fuel Assembly Design with State-of-the-Art Subchannel Codes. TOPFUEL, Salamanca, 22–26 Oct 2006Google Scholar
  40. 40.
    Glück, M.: Sub-channel analysis with F-COBRA-TF – code validation and approaches to CHF prediction. Nucl. Eng. Des. 237, 655–667 (2007)Google Scholar
  41. 41.
    Suchy, P., Ulrych, G., Kemner, H., Kurz, E.: Application of tables of critical heat fluxes to rod bundles. Transactions of the ENC ’79 Conference of the European Nuclear Society. Hamburg, Germany, May (1979)Google Scholar
  42. 42.
    Lahey, R.T., Drew, D.A.: An asssessment of the literature related to LWR instability modes. NUREG/CR-1414 (1980)Google Scholar
  43. 43.
    Katto, Y., Ohno, H.: An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes. Int. J. Heat Mass Transf. 27(9), 1641–1648 (1984)Google Scholar
  44. 44.
    Katto, Y.: A generalized correlation of critical heat flux for the forced convection boiling in vertical uniformly heated round tubes – a supplementary report. Int. J. Heat Mass Transf. 22, 783–794 (1979)Google Scholar
  45. 45.
    Katto, Y., Yokoya, S.: CHF of forced convection boiling in uniformly heated vertical tubes: experimental study of HP-Regime by the use of refrigerant 12. Int. J. Multiphase Flow 8, 165–181 (1982)Google Scholar
  46. 46.
    Groeneveld, D.C.: The occurrence of upstream dryout in uniformly heated channels. Proc. 5th Int. Heat Transf. Conf. 4, 265–269 (1974)Google Scholar
  47. 47.
    Katto, Y.: A generalized correlation of ritical heat flux for the forced convection boiling in vertical uUniformly heated round tubes. Heat Mass Transf. 21, 1527–1542 (1978)Google Scholar
  48. 48.
    Katto, Y.: An analysis of the effect of inlet subcooling on critical heat flux of forced convection boiling in vertical uniformly heated tubes. Int. J. Heat Mass Transf. 22, 1567–1575 (1979)Google Scholar
  49. 49.
    Katto, Y.: General features of CHF of forced convection boiling in uniformly heated vertical tubes with zero inlet subcooling. Int. J. Heat Mass Transf. 23, 493–504 (1980)Google Scholar
  50. 50.
    Katto, Y.: Critical heat flux of forced convection boiling in uniformly heated vertical tubes (Correlation of CHF in HP-regime and determination of CHF-Regime map). Int. J. Heat Mass Transf. 23, 1573–1580 (1980)Google Scholar
  51. 51.
    Katto, Y.: A study of limiting exit quality of CHF of forced convection boiling in uniformly heated vertical channels. Transaction of American Society of Mechanical. Engineera, Series C. J. Heat Transf. 104, 40–47 (1982)Google Scholar
  52. 52.
    Katto, Y.: On the heat-flux/exit-quality type correlation of CHF of forced convection boiling in uniformly heated vertical tubes. Int. J. Heat Mass Transf. 24, 533–539 (1981)Google Scholar
  53. 53.
    Katto, Y., Ashida, S.: CHF in high-pressure regime for forced convection boiling in uniformly heated vertical tube of low length-to-diameter ratio. Proc. 7th Int. Heat Tranf. Conf. 4, 291–296 (1982)Google Scholar
  54. 54.
    Nishikawa, K., Yoshida, S., Yamada, A., Ohno, M.: Experimental investigation of critical heat flux in forced convection boiling of Freon in a tube at high subcritical pressure. Proc. 7th Int. Heat Transf. Conf. 4, 321–326 (1982)Google Scholar
  55. 55.
    Katto, Y.: An analytical investigation on CHF of flow boiling in uniformly heated vertical tubes with special reference to governing dimensionsless groups. Int. J. Heat Mass Transf. 25, 1353–1361 (1982)Google Scholar
  56. 56.
    Groeneveld, D.C.: Freon Dryout Correlations and their Applicability to Water. AECL 3418 (1969)Google Scholar
  57. 57.
    Ilic, V.: The Effect of Pressure on Burnout in a Round Tube Cooled by Freon 12. AAEC/E 325 (1974)Google Scholar
  58. 58.
    Barnett, P.G., Wood, R.W.: An Experimental Investigation to Determine the Scaling Laws of Forced Convection Boiling Heat Transfer, Part 2: An Examination of Burnout Data for Water, Freon 12 and Freon 21 in Uniformly Heated Round Tubes. AEEW-R443 (1965)Google Scholar
  59. 59.
    Staub, F.W.: Two phase fluid modelling – the critical heat flux. Nucl. Sci. Eng. 35, 190–199 (1969)Google Scholar
  60. 60.
    Purcupile, J.C., Gouse, S.W.: Reynolds Flux Model of Critical Heat Flux in Subcooled Forced Convection Boiling. ASME-72-HT-4 (1972)Google Scholar
  61. 61.
    Dix, G.E.: Freon-Water Modelling of the CHF in Round Tubes. ASME 70-HT-26, ASME, New York (1970)Google Scholar
  62. 62.
    Katto, Y., Yokoya, S.: Critical heat flux of liquid helium (I) in forced convective boiling. Int. J. Multiphase Flow 10(4), 401–413 (1984)Google Scholar
  63. 63.
    Lewis, J.P., Goodykoontz, J.H., Kline, J.F.: Boiling Heat Transfer to Liquid Hydrogen and Nitrogen in Forced Flow. NASA, Techn. Note D-1314. National Aeronautics and Space Administration, Washington, DC (1962)Google Scholar
  64. 64.
    Alad’yev, T., Gorlov, I.G., Dodonov, L.D., Fedynskiy, O.S.: Heat transfer to boiling potassium in uniformly heated tubes. Heat Transf. Sov. Res. 1(4), 14–26 (1969)Google Scholar
  65. 65.
    Hoffman, H.W., Krakoviak, A.I.: Convective Boiling with Liquid Potassium. In: Proceedings of the Heat Transfer and Fluid Mechanics Institute, S. 19–37. Oak Ridge National Laboratory, Oak Ridge (1964)Google Scholar
  66. 66.
    Noel, M.B.: Experimental Investigation of the Forced-Convection and Nucleate-Boiling Heat-Transfer Characteristics of Liquid Ammonia. JPL-Tech. Notes Report No. 32–125, California Inst. of Tech., Pasadena, CA, USA, (1966)Google Scholar
  67. 67.
    Cumo, M., Bertoni, R., Cipriani, R., Palazzi, G.: Up-flow and down-flow burnout. Inst. Mech. Eng. Conf. Publ. 1977–1978, 183–192 (1977)Google Scholar
  68. 68.
    Wojtan, L., Revellin, R., Thome, J.R.: Investigation of saturated critical heat flux in a single, uniformly heated microchannel. Exp. Thermal Fluid Sci. 30, 765–774 (2006)Google Scholar
  69. 69.
    Park, J.E., Thome, J.R.: Critical heat flux in multi-microchannel copper elements with low pressure refrigerants. Int J. Heat Mass Transf. 53, 110–122 (2010)Google Scholar
  70. 70.
    Jensen, M.K., Bergles, A.: Critical heat flux in helically coiled tubes. J. Heat Transf. 103, 660–666 (1981)Google Scholar
  71. 71.
    Ahmad, S.Y.: Fluid-to-fluid modelling of CHF: a compensated distortion model. Int. J. Heat Mass Transf. 16, 641–662 (1973)Google Scholar
  72. 72.
    Katsaounis, A.: Literaturbewertung zur Fluidähnlichkeit für die kritische Heizflächenbelastung. GKSS 81/E/10, Geesthacht-Tesperhude, GermanyGoogle Scholar
  73. 73.
    Katsaounis, A.: Verification of Ahmad’s Fluid-to-Fluid Scaling Law by Bundle Experiments. Winter Annual Meeting of ASME, Chicago, HDT-Vol. 14 (1980)Google Scholar
  74. 74.
    Katsaounis, A.: Comparison of Various CHF-Data Performed in Different Fluids and Test Sections with Various CHF-Correlations. Europ. Two-Phase Flow Group Meeting, Eindhoven, 1981 und GKSS 81/E/35, GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht-Tesperhude, Germany (1981)Google Scholar
  75. 75.
    Stephan, K., Körner, M.: Berechnung des Wärmeübergangs verdampfender binärer Flüssigkeitsgemische. Chem.-Ing. Techn. 41, 409–434 (1969)Google Scholar
  76. 76.
    Marroquin Nisch, A.: Kritische Wärmestromdichte und minimale Wärmestromdichte des Filmsiedens binärer Gemische im zwangsdurchströmten senkrechten Rohr. Fortschr.-Ber. VDI, Reihe 3, Nr. 541. VDI Verlag, Düsseldorf (1998)Google Scholar
  77. 77.
    Sterman, L., Abramov, A., Checheta, G.: Investigation of Boiling Crisis at Forced Motion of High Temperature Organic Heat Carriers and Mixtures. International Symposium on Research into Co-current Gas-Liquid Flow, University of Waterloo, Canada, paper E 2 (1968)Google Scholar
  78. 78.
    Tolubinskiy, V.I., Matorin, A.S.: Forced convection boiling heat transfer crisis with binary mixture. Heat Transf. Sov. Res. 5(2), 98–101 (1973)Google Scholar
  79. 79.
    Celata, G.P., Cumo, M., Setaro, T.: Critical heat flux in upflow-convective boiling of refrigerant binary mixtures. Int. J. Heat Mass Transf. 37, 1143–1153 (1994)Google Scholar
  80. 80.
    Wallis, G.B.: One-dimensional Two-Phase-Flow. Mc-Graw-Hill, New York (1969)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Thermal Hydraulics and Fluid DynamicsFramatome GmbHErlangenDeutschland

Section editors and affiliations

  • Peter Stephan
    • 1
  1. 1.Institut für Technische ThermodynamikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations