Advertisement

VDI-Wärmeatlas pp 1989-2008 | Cite as

N7 Phasenwechselmaterialien (PCM) für Latent-Wärmespeicher

  • Ludger Josef FischerEmail author
Chapter
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Literatur

  1. 1.
    Alexiades, V., Solomon, A.D.: Mathematical Modeling of Melting and Freezing Processes. Taylor & Francis, Washington (1993)Google Scholar
  2. 2.
    Hauer, A., Hiebler, S., Reuß, M.: Wärmespeicher, 5., Vollst. BINE Informationsdienst. Fraunhofer IRB Verlag, Stuttgart (2010)Google Scholar
  3. 3.
    Beckmann, W. (Hrsg.): Crystallization. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2013)Google Scholar
  4. 4.
    Dincer, I., Rosen, M.A.: Thermal Energy Storage: Systems and Applications, 2. Aufl. Laserwords Private Limited, Chennai (2002)Google Scholar
  5. 5.
    Pielichowska, K., Pielichowski, K.: Phase change materials for thermal energy storage. Prog. Mater. Sci. 65, 67–123 (2014)CrossRefGoogle Scholar
  6. 6.
    Abhat, A.: Low temperature latent heat thermal energy storage: Heat storage materials. Sol. Energy 30(4), 313–332 (1983)CrossRefGoogle Scholar
  7. 7.
    Mehling, H., Cabeza, L.F.: Heat and Cold Storage with PCM. Springer, Berlin (2008)CrossRefGoogle Scholar
  8. 8.
    VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen: VDI-Wärmeatlas, 11. Aufl. Springer, Berlin/Heidelberg/New York (2013)Google Scholar
  9. 9.
    Hirman, S., Suwono, A., Mansoori, G.A.: Characterization of alkanes and paraffin waxes for application as phase change energy storage medium. Energy Sources 16(1), 117–128 (1994)CrossRefGoogle Scholar
  10. 10.
    Yaws, C.L.: Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals. McGraw-Hill Education LLC, New York (1999)Google Scholar
  11. 11.
    Tanaka, Y., Itani, Y., Kubota, H., Makita, T.: Thermal conductivity of five normal alkanes in the temperature range 283–373K at pressures up to 250MPa. Int. J. Thermophys. 9(3), 331–350 (1988)CrossRefGoogle Scholar
  12. 12.
    Griesbaum, K., Behr, A., Biedenkapp, H., Voges, D., Garbe, H.-W., Paetz, D., Collin, C., Mayer, G., Höke, D.: Hydrocarbons. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, New York (2000)Google Scholar
  13. 13.
    Bo, H., Gustafsson, E.M., Setterwall, F.: Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems. Energy 24(12), 1015–1028 (1999)CrossRefGoogle Scholar
  14. 14.
    Vélez, C., Ortiz De Zarate, J.M., Khayet, M.: Thermal properties of n-pentadecane, n-heptadecane and n-nonadecane in the solid/liquid phase change region. Int. J. Therm. Sci. 94, 139–146 (2015)CrossRefGoogle Scholar
  15. 15.
    Knothe, G., Steidley, K.R.: Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84(9), 1059–1065 (2005)CrossRefGoogle Scholar
  16. 16.
    Vélez, C., Khayet, M., Ortiz De Zarate, J.M.: Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: N-Hexadecane, n-octadecane and n-eicosane. Appl. Energy 143, 383–394 (2015)CrossRefGoogle Scholar
  17. 17.
    Caudwell, D.R., Trusler, J.P.M., Vesovic, V., Wakeham, W.A.: The viscosity and density of n-dodecane and n-octadecane at pressures up to 200 MPa and temperatures up to 473 K. Int. J. Thermophys. 25(5), 1339–1352 (2004)CrossRefGoogle Scholar
  18. 18.
    Chu, L.T., Sindilariu, C., Freilich, A., Fried, V.: Some physical properties of long chain hydrocarbons. Can. J. Chem. 64, 1–3 (1986)CrossRefGoogle Scholar
  19. 19.
    Queimada, A.J., Quinones-Cisneros, S.E., Marrucho, I.M., Coutinho, J.A.P., Stenby, E.H.: Hydrocarbon mixtures 1. Int. J. Thermophys. 24(5), 1221–1239 (2003)CrossRefGoogle Scholar
  20. 20.
    Paris, J., Falardeau, M., Villeneuve, C.: Thermal storage by Latent heat: A viable option for energy conservation in buildings. Energy Sources 15(1), 85–93 (1993)CrossRefGoogle Scholar
  21. 21.
    Vargaftik, N.B., Filippov, L.P., Taryimanov, A.A., Totskii, E.E.: Handbook of Thermal Conductivity of Liquid and Gases. Energoatomizdat Publishing House, Moscow (1994)Google Scholar
  22. 22.
    Jin, Y., Wunderlich, B.: Heat capacities of paraffins and polyethylene. J. Phys. Chem. 95(22), 9000–9007 (1991)CrossRefGoogle Scholar
  23. 23.
    Anneken, D.J., Both, S., Chistoph, R., Fieg, G., Steinberger, U., Westfechtel, A.: Fatty acids. In: Ullmann’s Encyclopedia of Industrial Chemistry, 547–572. (2012)Google Scholar
  24. 24.
    Putnam, W.E., McEachern, D.M., Kilpatrick, J.E.: Entropy and related thermodynamic properties of acetonitrile (methyl cyanide). J. Chem. Phys. 42(2), 749–755 (1965)CrossRefGoogle Scholar
  25. 25.
    D. Velzen van, R. L. Cardozo, and H. Langenkamp, „A liquid viscosity-temperature-chemical constitution relation for organic compounds.“ Ind. Eng. Chem. Fundam. 11(1), 20–25 (1972)Google Scholar
  26. 26.
    Mackay, D., Shiu, W.Y., Ma, K., Lee, S.C.: Properties and Environmental Fate Second Edition Introduction and Hydrocarbons vol. III, no. 14 (2006)Google Scholar
  27. 27.
    Wolfram, J.: Messungen der Wärmeleitfähigkeit von organischen, aliphatischen Flüssigkeiten und von Gasen nach einem instationären Absolutverfahren (1964)Google Scholar
  28. 28.
    Perry, R.H., Green, D.W., Maloney, J.O.: Perry’s Chemical Engineers’ Handbook, 7 Aufl., Bd. 27 (1997)Google Scholar
  29. 29.
    Ahluwalia, R., Wanchoo, R.K., Sharma, S.K., Vashisht, J.L.: Density, viscosity, and surface tension of binary liquid systems: Ethanoic acid, propanoic acid, and butanoic acid with nitrobenzene. J. Solut. Chem. 25(9), 905–917 (1996)CrossRefGoogle Scholar
  30. 30.
    Lane, G.A.: Low temperature heat storage with phase change materials. Int. J. Ambient Energy 1(3), 155–168 (1980)CrossRefGoogle Scholar
  31. 31.
    Lutton, E.S.: Fatty Acids: Their Chemistry, Properties, Production and Uses. Interscience, New York (1967)Google Scholar
  32. 32.
    Desgrosseilliers, L., Whitman, C.A., Groulx, D., White, M.A.: Dodecanoic acid as a promising phase-change material for thermal energy storage. Appl. Therm. Eng. 53(1), 37–41 (2013)CrossRefGoogle Scholar
  33. 33.
    Karaipekli, A., Sari, A., Kaygusuz, K.: Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications. Renew. Energy 32(13), 2201–2210 (2007)CrossRefGoogle Scholar
  34. 34.
    Nunes, V.M.B., Queirós, C.S., Lourenço, M.J.V., Santos, F.J.V., Nieto de Castro, C.A.: Molten salts as engineering fluids – a review: Part I. Molten alkali nitrates. Appl. Energy 183, 603–611 (2016)Google Scholar
  35. 35.
    Stamatiou, A., Obermeyer, M., Fischer, L.J., Schuetz, P., Worlitschek, J.: Investigation of unbranched, saturated, carboxylic esters as phase change materials. Renew. Energy 108, 401–409 (2017)CrossRefGoogle Scholar
  36. 36.
    Pratas, M.J., Freitas, S., Oliveira, M.B., Monteiro, S.C., Lima, A.S., Coutinho, J.A.P.: Densities and viscosities of fatty acid methyl and ethyl esters. J. Chem. Eng. Data 55(9), 3983–3990 (2010)CrossRefGoogle Scholar
  37. 37.
    Babich, M.W., Hwang, S.W., Mounts, R.D.: The thermal analysis of energy storage materials by differential scanning calorimetry. Thermochim. Acta. 210, 77–82 (1992)CrossRefGoogle Scholar
  38. 38.
    Suppes, G.J., Goff, M.J., Lopes, S.: Latent heat characteristics of fatty acid derivatives pursuant phase change material applications. Chem. Eng. Sci. 58(9), 1751–1763 (2003)CrossRefGoogle Scholar
  39. 39.
    Wirth, E., Droege, J.W., Wood, H.: Low Temperature Heat Capacity of Palmitic Acid and Methyl Palmitate, 60(6), 917–918 (1956)Google Scholar
  40. 40.
    Aydin, A.A., Okutan, H.: High-chain fatty acid esters of myristyl alcohol with odd carbon number: Novel organic phase change materials for thermal energy storage – 2. Sol. Energy Mater. Sol. Cells 95(8), 2417–2423 (2011)CrossRefGoogle Scholar
  41. 41.
    Aydin, A.A.: High-chain fatty acid esters of 1-octadecanol as novel organic phase change materials and mathematical correlations for estimating the thermal properties of higher fatty acid esters’ homologous series. Sol. Energy Mater. Sol. Cells 113, 44–51 (2013)CrossRefGoogle Scholar
  42. 42.
    Peter, K., Vollhardt, C., Schore, N.E.: Organische Chemie. VCH Verlagsgesellschaft, Weinheim (1990)Google Scholar
  43. 43.
    Noweck, K., Grafahrend, W.: Fatty alcohols. In: Ullmann’s Encyclopedia of Industrial Chemistry, 547–572 (2012)Google Scholar
  44. 44.
    Van Miltenburg, J.C., Gabrielová, H., Růžička, K.: Heat capacities and derived thermodynamic functions of 1-hexanol, 1-heptanol, 1-octanol, and 1-decanol between 5 K and 390 K. J. Chem. Eng. Data 48(5), 1323–1331 (2003)CrossRefGoogle Scholar
  45. 45.
    Yaws, C.L.: Handbook of Thermal Conductivity, Volume 3: Organic Compounds C8 to C28. Gulf Publishing, Houston (1995)Google Scholar
  46. 46.
    Al-Jimaz, A.S., Al-Kandary, J.A., Abdul-Latif, A.H.M.: Densities and viscosities for binary mixtures of phenetole with 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol at different temperatures. Fluid Phase Equilib. 218(2), 247–260 (2004)CrossRefGoogle Scholar
  47. 47.
    Nichols, G. et al.: Evaluation of the Vaporization , Fusion , and Sublimation Enthalpies of the 298.15 K by Correlation Gas Chromatography, J. Chem. Eng. Data, 475–482 (2006)Google Scholar
  48. 48.
    Khasanshin, T.S., Zykova, T.B.: Specific heat of saturated monatomic alcohols. J. Eng. Phys. 56(6), 698–700 (1989)CrossRefGoogle Scholar
  49. 49.
    Shan, Z., Asfour, A.-F.A.: Viscosities and densities of nine binary 1-alkanol systems at 293,15 K and 298,15 K. J. Chem. Eng. Data 44(1), 118–123 (1999)CrossRefGoogle Scholar
  50. 50.
    Acree William, J., Chickos, J.S.: Phase transition enthalpy measurementsof organic and organometallic compounds. Sublimation, vaporizationand fusion enthalpies from 1880 to 2010. J. Phys. Chem. Ref. Data 39(4), 43101 (2010)CrossRefGoogle Scholar
  51. 51.
    Matsuo, S., Makita, T.: Viscosities of six 1-Alkanols at temperatures in the range 298–348 K and pressures up to 200 MPa. Int. J. Thermophys. 10(4), 833–843 (1989)CrossRefGoogle Scholar
  52. 52.
    Mosselman, C., Mourik, J., Dekker, H.: Enthalpies of phase change and heat capacities of some long-chain alcohols. Adiabatic semi-microcalorimeter for studies of polymorphism. J. Chem. Thermodyn. 6(5), 477–487 (1974)CrossRefGoogle Scholar
  53. 53.
    Mosselman, C., Dekker, H.: Enthalpies of formation of nitroalkanes, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 417–424 (1973)Google Scholar
  54. 54.
    Ventola, L., et al.: Melting behaviour in the n-alkanol family. Enthalpy-entropy compensation. Phys. Chem. Chem. Phys. 6(8), 1786–1791 (2004)CrossRefGoogle Scholar
  55. 55.
    Xing, J., Tan, Z.C., Shi, Q., Tong, B., Wang, S.X., Li, Y.S.: Heat capacity and thermodynamic properties of 1-hexadecanol. J. Therm. Anal. Calorim. 92(2), 375–380 (2008)CrossRefGoogle Scholar
  56. 56.
    Van Miltenburg, J.C., Oonk, H.A.J., Ventola, L.: Heat capacities and derived thermodynamic functions of 1-octadecanol, 1-nonadecanol, 1-eicosanol, and 1-docosanol between 10 K and 370 K. J. Chem. Eng. Data 46(1), 90–97 (2001)CrossRefGoogle Scholar
  57. 57.
    Schiweck, H. et al.: Sugar alcohols. In: Ullmann’s Encyclopedia of Industrial Chemistry, S. 2–32 (2012)Google Scholar
  58. 58.
    Kaizawa, A., et al.: Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system. Heat Mass Transf. 44(7), 763–769 (2008)CrossRefGoogle Scholar
  59. 59.
    Barone, G., Della Gatta, G., Ferro, D., Piacente, V.: Enthalpies and entropies of sublimation, vaporization and fusion of nine polyhydric alcohols. J. Chem. Soc. Faraday Trans. 86(1), 75 (1990)CrossRefGoogle Scholar
  60. 60.
    Höhlein, S., König-Haagen, A., Brüggemann, D.: Thermophysical characterization of MgCl2·6H2O, xylitol and erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES). Materials (Basel) 10(4), 444 (2017)CrossRefGoogle Scholar
  61. 61.
    Parks, G.S., Huffman, M.: Thermal data on organic compounds. IV. The heat capacities, entropies and free energies of normal propyl alcohol, ethyl ether and dulctitol, Therm. Data Org. Compd. 48(1925), 2788–2793 (1926)Google Scholar
  62. 62.
    Zhu, C., Ma, Y., Zhou, C.: Densities and viscosities of sugar alcohol aqueous solutions. J. Chem. Eng. Data. 55(9), 3882–3885 (2010)CrossRefGoogle Scholar
  63. 63.
    Lebrun, N., Van Miltenburg, J.C.: Calorimetric study of maltitol: Correlation between fragility and thermodynamic properties. J. Alloys Compd. 320(2), 320–325 (2001)CrossRefGoogle Scholar
  64. 64.
    Kumaresan, G., Velraj, R., Iniyan, S.: Thermal analysis of D-mannitol for use as phase change material for latent heat storage. J. Appl. Sci. 11(16), 3044–3048 (2011)CrossRefGoogle Scholar
  65. 65.
    Gawron, K., Schröder, J.: Properties of some salt hydrates for latent heat storage. Int. J. Energy Res. 1(4), 351–363 (1977)CrossRefGoogle Scholar
  66. 66.
    Eva, G., Mehling, H., Werner, M.: Melting and nucleation temperatures of three salt hydrate phase change materials under static pressures up to 800 MPa. J. Phys. D Apppl. Phys. 40, 4636–4641 (2007)CrossRefGoogle Scholar
  67. 67.
    Shamberger, P.J., Reid, T.: Thermophysical properties of potassium fluoride tetrahydrate from (243 to 348) K. J. Chem. Eng. Data 58(2), 294–300 (2013)CrossRefGoogle Scholar
  68. 68.
    Nagano, K., Mochida, T., Takeda, S., Domański, R., Rebow, M.: Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems. Appl. Therm. Eng. 23(2), 229–241 (2003)CrossRefGoogle Scholar
  69. 69.
    Shamberger, P.J., Reid, T.: Thermophysical properties of lithium nitrate trihydrate from (253 to 353) K. J. Chem. Eng. Data 57(5), 1404–1411 (2012)CrossRefGoogle Scholar
  70. 70.
    Hale, B.D.V. et al.: Phase Change Materials Handbook. Nasa Contractor Report Nasa Cr-51363 (1971)Google Scholar
  71. 71.
    Patnaik, P.: Handbook of Inorganic Chemicals. McGraw-Hill, New York (2003)Google Scholar
  72. 72.
    Ruben, H.W., Olovsson, I., Templeton, D.H., Rosenstein, R.D.: Crystal structure and entropy of sodium sulfate decahydrate. J. Am. Chem. Soc. 83(4), 820–824 (1961)CrossRefGoogle Scholar
  73. 73.
    Kobe, K.A., Anderson, C.H.: The heat capacity of saturated sodium sulfate solution. J. Phys. Chem. 40(4), 429–433 (1935)CrossRefGoogle Scholar
  74. 74.
    Sharma, S.K., Jotshi, C.K., Singh, A.: Viscosity of molten sodium salt hydrates. J. Chem. Eng. Data 29(2), 245–246 (1984)CrossRefGoogle Scholar
  75. 75.
    Vanderzee, E.: J. Chem. Thermodyn. 14(3), 219–238 (1982)Google Scholar
  76. 76.
    Grönvold, F., Meisingset, K.K.: Thermodynamic properties and phase transitions of salt hydrates between 270 and 400 K. J. Chem. Thermodyn. 14(11), 1083–1098 (1982)CrossRefGoogle Scholar
  77. 77.
    Glasser, L.: Thermodynamics of inorganic hydration and of humidity control, with an extensive database of salt hydrate pairs. J. Chem. Eng. Data 59(2), 526–530 (2014)CrossRefGoogle Scholar
  78. 78.
    Naumann, R., Emons, H.H.: Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials. J. Therm. Anal. 35(3), 1009–1031 (1989)CrossRefGoogle Scholar
  79. 79.
    Lorsch, H.G., Kauffman, K.W., Denton, J.C.: Thermal energy storage for solar heating and off-peak air conditioning. Energy Convers 15(1–2), 1–8 (1975)CrossRefGoogle Scholar
  80. 80.
    Yinping, Z., Yi, J., Yi, J.: A simple method, the -history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol. 10(3), 201–205 (1999)CrossRefGoogle Scholar
  81. 81.
    Meisingset, K.K., Gronvold, F.: Thermodynamic properties and phase transitions of salt hydrates between 270 and 400 K III. CH3CO2Na 3H2O, CH3CO2Li 2H2O, and (CH3CO2)2Mg 4H2O. J. Chem. Thermodyn. 16(6), 523–536 (1984)CrossRefGoogle Scholar
  82. 82.
    Larranaga, M.D., Lewis, R.J., Lewis, R.A.: Hawley’s Condensed Chemical Dictionary, 16. Aufl. Wiley, Hoboken (2016)CrossRefGoogle Scholar
  83. 83.
    Pielichowski, K., Flejtuch, K.: Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym. Adv. Technol. 13, 690–696 (2002)CrossRefGoogle Scholar
  84. 84.
    Tyagi, O.S., Bisht, H.S., Chatterjee, A.K.: Phase transition, conformational disorder, and chain packing in crystalline long-chain symmetrical alkyl ethers and symmetrical alkenes. J. Phys. Chem. B. 108(9), 3010–3016 (2004)CrossRefGoogle Scholar
  85. 85.
    Oyama, H., et al.: Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals. Fluid Phase Equilib. 234(1–2), 131–135 (2005)CrossRefGoogle Scholar
  86. 86.
    Belandria, V., Mohammadi, A.H., Dominique, R.: Volumetric properties of the (tetrahydrofuran + water) and (tetra-n-butyl ammonium bromide + water) systems: Experimental measurements and correlations (TBAB). J. Chem. Thermodyn. 41, 1382–1386 (2009)CrossRefGoogle Scholar
  87. 87.
    Nagatomi, T.: Thermal conductivity measurement of TBAB hydrate by the transient hot-wire using parylene-coated probe. (2013)Google Scholar
  88. 88.
    BASF The Chemical Company: Technisches Merkblatt AdBlue. (2006)Google Scholar
  89. 89.
    Wei, G. et al.: Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 0–1 (2017)Google Scholar
  90. 90.
    Raud, R., Cholette, M.E., Riahi, S., Bruno, F., Saman, W.: Design optimization method for tube and fin latent heat thermal energy storage systems. Energy 134, 585–594 (2017)CrossRefGoogle Scholar
  91. 91.
    Dinker, A., Agarwal, M., Agarwal, G.D.: Heat storage materials, geometry and applications: A review. J. Energy Inst. 90(1), 1–11 (2017)CrossRefGoogle Scholar
  92. 92.
    Lizana, J., Chacartegui, R., Barrios-Padura, A., Valverde, J.M.: Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. Appl. Energy 203, 219–239 (2017)CrossRefGoogle Scholar
  93. 93.
    Fleischer, A.S.: Thermal Energy Storage Using Phase Change Materials: Fundamentals and Applications. Springer, Villanova (2015)CrossRefGoogle Scholar
  94. 94.
    Kaizawa, A., et al.: Thermal and flow behaviors in heat transportation container using phase change material. Energy Convers. Manag. 49(4), 698–706 (2008)CrossRefGoogle Scholar
  95. 95.
    Fischer, L.J., von Arx, S., Wechsler, U., Züst, S., Worlitschek, J.: Phase change dispersion properties, modeling apparent heat capacity. Int. J. Refrig. 74, 240–253 (2017)CrossRefGoogle Scholar
  96. 96.
    Weiss, L., Züst, S., Fischer, L., Worlitschek, J., Reinhard, E.: Vorrichtung zur Kühlung von Maschinenbauteilen mittels PCM, EP2949422 (2014)Google Scholar
  97. 97.
    Mehling, H., Cabeza, L.F.: Heat and Cold Storage with PCM: An Up to Date Introduction into Basics and Applications. (2008)Google Scholar
  98. 98.
    Kauffeld, M., Wang, M.J., Goldstein, V., Kasza, K.E.: Ice slurry applications. Int. J. Refrig. 33(8), 1491–1505 (2010)CrossRefGoogle Scholar
  99. 99.
    Egolf, P.W., Kauffeld, M.: From physical properties of ice slurries to industrial ice slurry applications. Int. J. Refrig. 28(1), 4–12 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Hochschule LuzernHorwSchweiz

Section editors and affiliations

  • Matthias Kind
    • 1
  1. 1.Institut für Thermische VerfahrenstechnikKarlsruher Institut für Technologie (KIT)KarslruheDeutschland

Personalised recommendations