Advertisement

Ökologie pp 233-271 | Cite as

Prädation, Weidegang und Krankheiten

  • Michael Begon
  • Robert W. Howarth
  • Colin R. Townsend
Chapter

Zusammenfassung

Nach einem Beispiel für einen Prädator oder Räuber gefragt, werden die meisten Menschen spontan mit ziemlicher Sicherheit so etwas wie „Löwe“, „Tiger“ oder „Eisbär“ nennen – auf jeden Fall ein großes, gefährliches Tier, dessen Angriff für seine Beute sofort tödlich ist.

Bibliographie

  1. Ehrlen, J. (2003) Fitness components versus total demographic effects: evaluating herbivore impacts on a perennial herb. American Naturalist, 162, 796–810CrossRefGoogle Scholar
  2. Koop, J.A.H., Huber, S.K., Laverty, S.M. & Clayton, D.H. (2011) Experimental demonstration of the fitness consequences of an introduced parasite of Darwin’s finches. PLoS ONE, 6, e19706CrossRefGoogle Scholar
  3. Begon, M., Sait, S.M. & Thompson, D.J. (1995) Persistence of a predator–prey system: refuges and generation cycles? Proceedings of the Royal Society of London, Series B, 260, 131–137CrossRefGoogle Scholar
  4. Pennings, S.C. & Callaway, R.M. (2002) Parasitic plants: parallels and contrasts with herbivores. Oecologia, 131, 479–489CrossRefGoogle Scholar
  5. Murray, D.L., Cary, J.R. & Keith, L.B. (1997) Interactive effects of sublethal nematodes and nutritional status on snowshoe hare vulnerability to predation. Journal of Animal Ecology, 66, 250–264CrossRefGoogle Scholar
  6. Strauss, S.Y. & Agrawal, A.A. (1999) The ecology and evolution of plant tolerance to herbivory. Trends in Ecology and Evolution, 14, 179–185CrossRefGoogle Scholar
  7. Lennartsson, T., Nilsson, P. & Tuomi, J. (1998) Induction of overcompensation in the field gentian, Gentianella campestris. Ecology, 79, 1061–1072CrossRefGoogle Scholar
  8. Pavia, H. & Toth, G.B. (2000) Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum. Ecology, 81, 3212–3225CrossRefGoogle Scholar
  9. Agrawal, A.A. (1998) Induced responses to herbivory and increased plant performance. Science, 279, 1201–1202CrossRefGoogle Scholar
  10. Oedekoven, M.A. & Joern, A. (2000) Plant quality and spider predation affects grasshoppers (Acrididae): food-quality-dependent compensatory mortality. Ecology, 81, 66–77CrossRefGoogle Scholar
  11. FitzGibbon, C.D. & Fanshawe, J. (1989) The condition and age of Thomson’s gazelles killed by cheetahs and wild dogs. Journal of Zoology, 218, 99–107CrossRefGoogle Scholar
  12. FitzGibbon, C.D. (1990) Anti-predator strategies of immature Thomson’s gazelles: hiding and the prone response. Animal Behaviour, 40, 846–855CrossRefGoogle Scholar
  13. Maron, J.L. & Kauffman, M.J. (2006) Habitat-specific impacts of multiple consumers on plant population dynamics. Ecology, 8, 113–124CrossRefGoogle Scholar
  14. Klemola, T., Koivula, M., Korpimaki, E. & Norrdahl, K. (2000) Experimental tests of predation and food hypotheses for population cycles of voles. Proceedings of the Royal Society of London, Series B, 267, 351–356CrossRefGoogle Scholar
  15. Courant, S. & Fortin, D. (2011) Time allocation of bison in meadow patches driven by potential energy gains and group size dynamics. Oikos, 121, 1163–1173CrossRefGoogle Scholar
  16. Disma, G., Sokolowski, M.B.C. & Tonneau, F. (2011) Children’s competition in a natural setting: evidence for the ideal free distribution. Evolution and Human Behaviour, 32,373–379CrossRefGoogle Scholar
  17. Volterra, V. (1926) Variations and fluctuations of the numbers of individuals in animal species living together. (Reprinted in 1931. In: Animal Ecology (R.N. Chapman, ed.), pp. 409–448. McGraw Hill, New York.)Google Scholar
  18. Lotka, A.J. (1932) The growth of mixed population: two species competing for a common food supply. Journal of the Washington Academy of Sciences, 22, 461–469Google Scholar
  19. Yoshida, T., Jones, L.E., Ellner, S.P., Fussmann, G.F. & Hairston, N.G., Jr. (2003) Rapid evolution drives ecological dynamics in a predator–prey system. Nature, 424, 303–306CrossRefGoogle Scholar
  20. MacLulick, D.A. (1937) Fluctuations in numbers of the varying hare (Lepus americanus). University of Toronto Studies, Biology Series, 43, 1–136Google Scholar
  21. Krebs, C.J., Boonstra, R., Boutin, S. & Sinclair, A.R.E. (2001) What drives the 10-year cycle of snowshoe hares? Bioscience, 51, 25–35CrossRefGoogle Scholar
  22. Stenseth, N.C., Falck, W., Bjornstad, O.N. & Krebs, C.J. (1997) Population regulation in snowshoe hare and lynx populations: asymmetric food web configurations between the snowshoe hare and the lynx. Proceedings of the National Academy of Science of the USA, 94, 5147–5152CrossRefGoogle Scholar
  23. Anderson, R.M. (1982) Epidemiology. In: Modern Parasitology (F.E.G. Cox, ed.), pp. 205–251. Blackwell Scientific Publications, OxfordGoogle Scholar
  24. Dabbagh, A., Gacic-Dobo, M., Simons, E., Featherstone, D., Strebel, P., Okwo-Bele, J. M., Hoekstra, E., Chopra, M., Uzicanin, A. & Cochi, S. (2009) Global measles mortality, 2000–2009. Morbidity and Mortality Weekly Report 2009, 58, 1321–1326Google Scholar
  25. Keeling, M.J., Rohani, P. & Grenfell, B.T. (2001) Seasonally-forced disease dynamics explored as switching between attractors. Physica D, 148, 317–335CrossRefGoogle Scholar
  26. Paterson, S. & Viney, M.E. (2002) Host immune responses are necessary for density dependence in nematode infections. Parasitology, 125, 283–292CrossRefGoogle Scholar
  27. Janssen, A., van Gool, E., Lingeman, R., Jacas, J. & van de Klashorst, G. (1997) Metapopulation dynamics of a persisting predator-prey system in the laboratory: time series analysis. Experimental and Applied Acarology, 21, 415–430CrossRefGoogle Scholar
  28. Murdoch, W.W. & Stewart-Oaten, A. (1975) Predation and population stability. Advances in Ecological Research, 9, 1–131CrossRefGoogle Scholar
  29. Holyoak, M. & Lawler, S.P. (1996) Persistence of an extinction-prone predator–prey interaction through metapopulation dynamics. Ecology, 77, 1867–1879.CrossRefGoogle Scholar
  30. Bonsall, M.B., French, D.R. & Hassell, M.P. (2002) Metapopulation structure affects persistence of predator–prey interactions. Journal of Animal Ecology, 71, 1075–1084CrossRefGoogle Scholar
  31. Kullberg, C. & Ekman, J. (2000) Does predation maintain tit community diversity? Oikos, 89, 41–45CrossRefGoogle Scholar
  32. Mwendera, E.J., Saleem, M.A.M. & Woldu, Z. (1997) Vegetation response to cattle grazing in the Ethiopian Highlands. Agriculture, Ecosystems and Environment, 64, 43–51CrossRefGoogle Scholar
  33. Lubchenco, J. (1978) Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. American Naturalist, 112, 23–39CrossRefGoogle Scholar
  34. Gende, S.M., Quinn, T.P. & Willson, M.F. (2001) Consumption choice by bears feeding on salmon. Oecologia, 127, 372–382CrossRefGoogle Scholar
  35. Karban, R., Agrawal, A.A., Thaler, J.S. & Adler, L.S. (1999) Induced plant responses and information content about risk of herbivory. Trends in Ecology and Evolution, 14, 443–447CrossRefGoogle Scholar
  36. Karels, T.J. & Boonstra, R. (2000) Concurrent density dependence and independence in populations of arctic ground squirrels. Nature, 408, 460–463CrossRefGoogle Scholar
  37. Valeix, M., Loveridge, A.J., Chamaille-Jammes, S., Davidson, Z., Murindagomo, F., Fritz, H. & McDonald, D.W. (2009) Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use. Ecology, 90, 23–30CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Michael Begon
    • 1
  • Robert W. Howarth
    • 2
  • Colin R. Townsend
    • 3
  1. 1.Department of ZoologyUniversity of LiverpoolLiverpoolGroßbritannien
  2. 2.Department of EcologyCornell UniversityIthacaUSA
  3. 3.Dept. of ZoologyUniversity of OtagoDunedinNeuseeland

Personalised recommendations