Advertisement

Lipidstoffwechselstörungen

  • Bodo Melnik
Chapter
Part of the Springer Reference Medizin book series (SRM)

Zusammenfassung

Lipidstoffwechselstörungen sind in allen Industrienationen sehr häufig. Sie sind multifaktoriell bedingt: Ursache ist die Kombination von genetischen Faktoren, erhöhter Kalorienzufuhr bzw. hyperinsulinotroper Ernährung, zu wenig Bewegung, Rauchen, Alkoholkonsum sowie Erkrankungen wie Diabetes mellitus oder metabolisches Syndrom; auch zahlreiche Arzneimittel können Lipidstoffwechselstörungen bedingen. Wichtigste Folge sind kardiovaskuläre Krankheiten, an der Haut jedoch können typische Veränderungen (Xanthome) auftreten, die – werden sie frühzeitig erkannt – als klinische Warnzeichen für eine ernste metabolische/kardiovaskuläre Grunderkrankung dienen können. Die verschiedenen Hautmanifestationen werden im Folgenden beschrieben.

Literatur

Übersichtsarbeiten

  1. Armstrong EJ, Krueger JG (2016) Lipoprotein metabolism and inflammation in patients with psoriasis. Am J Cardiol 118:603–609CrossRefPubMedGoogle Scholar
  2. Banach M, Nikolic D, Rizzo M, Toth PP (2016) IMPROVE-IT: what have we learned? Curr Opin Cardiol 31:426–433CrossRefPubMedGoogle Scholar
  3. Biesalski HK, Bischoff SC, Puchstein C (Hrsg) (2010) Ernährungsmedizin: Nach dem Curriculum Ernährungsmedizin der Bundesärztkammer und der DGE, 12. Aufl. Thieme Verlag, StuttgartGoogle Scholar
  4. European Association for Cardiovascular Prevention & Rehabilitation, Reiner Z, Catapano AL, De Backer G et al (2011) SC/EAS Guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 32:1769–1818CrossRefGoogle Scholar
  5. Gabcova-Balaziova D, Stanikova D, Vohnout B et al (2015) Molecular-genetic aspects of familial hypercholesterolemia. Endocr Regul 49:164–181CrossRefPubMedGoogle Scholar
  6. Hegele RA, Ginsberg HN, Chapman MJ et al (2014) The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol 2:655–666CrossRefPubMedGoogle Scholar
  7. Joseph L, Robinson JG (2015) Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition and the future of lipid lowering therapy. Prog Cardiovasc Dis 58:19–31CrossRefPubMedGoogle Scholar
  8. Klör H-U, Weizel A, Augustin M et al (2011) Beeinflussung des Fettstoffwechsels durch systemische Vitamin-A-Derivate – Welche Empfehlungen leiten sich daraus für die dermatologische Paxis ab? J Dtsch Dermatol Ges 9:600–607PubMedGoogle Scholar
  9. Ray KK, Kastelein JJ, Boekholdt SM et al (2014) The ACC/AHA 2013 guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular disease risk in adults: the good the bad and the uncertain: a comparison with ESC/EAS guidelines for the management of dyslipidaemias 2011. Eur Heart J 35:960–968CrossRefPubMedGoogle Scholar
  10. Ripatti P, Rämö JT, Söderlund S et al (2016) The contribution of GWAS loci in familial dyslipidemias. PLoS Genet 12:e1006078CrossRefPubMedPubMedCentralGoogle Scholar
  11. Sabatine MS (2016) Advances in the treatment of dyslipidemia. Cleve Clin J Med 83:181–186CrossRefPubMedGoogle Scholar
  12. Sabatine MS, Giugliano RP, Wiviott SD et al (2015) Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 372:1500–1509CrossRefPubMedGoogle Scholar
  13. Schaefer EJ, Tsunoda F, Diffenderfer M et al (2016) The measurement of lipids, lipoproteins, apolipoproteins, fatty acids, and sterols, and next generation sequencing for the diagnosis and treatment of lipid disorders. In: De Groot LJ, Beck-Peccoz P, Chrousos G et al (Hrsg) Endotext [Internet]. MDText.com, South DartmouthGoogle Scholar
  14. Schmitz G, Grandl M (2008) Lipid homeostasis in macrophages – implications for atherosclerosis. Rev Physiol Biochem Pharmacol 160:93–125PubMedGoogle Scholar
  15. Singh S, Bittner V (2015) Familial hypercholesterolemia – epidemiology, diagnosis, and screening. Curr Atheroscler Rep 17:482CrossRefPubMedGoogle Scholar
  16. Szalat R, Arnulf B, Karlin L et al (2011) Pathogenesis and treatment of xanthomatosis associated with monoclonal gammopathy. Blood 118:3777–3784CrossRefPubMedGoogle Scholar
  17. Verbeek R, Hovingh GK, Boekholdt SM (2015) Non-high-density lipoprotein cholesterol: current status as cardiovascular marker. Curr Opin Lipidol 26:502–510CrossRefPubMedGoogle Scholar
  18. Arzneimittelkommission der deutschen Ärzteschaft: Empfehlungen zur Therapie von Fettstoffwechselstörungen, Arzneiverordnung in der Praxis (2012) Bd 39, Sonderheft 1, 3. Aufl. S 1–51Google Scholar
  19. Yoo EG (2016) Sitosterolemia: a review and update of pathophysiology, clinical spectrum, diagnosis, and management. Ann Pediatr Endocrinol Metab 21:7–14CrossRefGoogle Scholar
  20. Zak A, Zeman M, Slaby A, Vecka M (2014) Xanthomas: clinical and pathophysiological relations. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 158:181–188CrossRefGoogle Scholar

Xanthome und Xanthelasmen

  1. Berge KE, Tian H, Graf GA et al (2000) Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporter. Science 290:1771–1775CrossRefPubMedGoogle Scholar
  2. Bergman R (1998) Xanthelasma palpebrarum and risk of atherosclerosis. Int J Dermatol 37:343–345CrossRefPubMedGoogle Scholar
  3. Cohen YK, Elpern DJ (2015) Diffuse normolipemic plane xanthoma associated with monoclonal gammopathy. Dermatol Pract Concept 5:65–67PubMedPubMedCentralGoogle Scholar
  4. Cruz PD Jr, East C, Bergstresser PR (1988) Dermal, subcutaneous, and tendon xanthomas: diagnostic markers for specific lipoprotein disorders. J Am Acad Dermatol 19:95–111CrossRefPubMedGoogle Scholar
  5. Guirado SS, Conejo-Mir JS, Muñoz MA et al (2007) Sitosterol xanthomatosis. J Eur Acad Dermatol Venereol 21:100–103CrossRefPubMedGoogle Scholar
  6. Hofmann JJ, Zovein AC, Koh H et al (2010) Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development 137:4061–4072CrossRefPubMedPubMedCentralGoogle Scholar
  7. Nair PA, Patel CR, Ganjiwale JD et al (2016) Xanthelasma palpebrarum with Arcus cornea: a clinical and biochemical study. Indian J Dermatol 61:295–300CrossRefPubMedPubMedCentralGoogle Scholar
  8. Orsó E, Grandl M, Schmitz G (2011) Oxidized LDL-induced endolysosomal phospholipidosis and enzymatically modified LDL-induced foam cell formation determine specific lipid species modulation in human macrophages. Chem Phys Lipids 164:479–487CrossRefPubMedGoogle Scholar
  9. Schmitz G, Langmann S (2006) The lipid flux rheostat: implications of lipid trafficing pathways. J Mol Med 84:262–265CrossRefPubMedGoogle Scholar
  10. Wang H, Shi Y, Guan H et al (2016) Treatment of xanthelasma palpebrarum with intralesional pingyangmycin. Dermatol Surg 42:368–376CrossRefPubMedGoogle Scholar
  11. Yoo EG (2016) Sitosterolemia: a review and update of pathophysiology, clinical spectrum, diagnosis, and management. Ann Pediatr Endocrinol Metab 21:7–14CrossRefGoogle Scholar
  12. Zak A, Zeman M, Slaby A, Vecka M (2014) Xanthomas: clinical and pathophysiological relations. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 158:181–188CrossRefGoogle Scholar

Primäre Dyslipoproteinämien

  1. Arca M, Zuliani G, Wilund K et al (2002) Autosomal recessive hypercholesterolaemia in Sardinia, Italy, and mutations in AHR: a clinical and molecular genetic analysis. Lancet 359:841–847CrossRefPubMedGoogle Scholar
  2. Bodzioch M, Orsó E, Klucken J et al (1999) The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 22:347–351CrossRefPubMedGoogle Scholar
  3. Brown MS, Goldstein JL (1986) A receptor mediated pathway for cholesterol homeostasis. Science 232:34–47CrossRefGoogle Scholar
  4. De Graaf J, Veerkamp MJ, Stalenhoef AFH (2002) Metabolic pathogenesis of familial combined hyperlipidaemia with emphasis on insulin resistance, adipose tissue metabolism and free fatty acids. J R Soc Med 95:46–53CrossRefPubMedPubMedCentralGoogle Scholar
  5. Oliva CP, Pisciotta L, Li Volti G et al (2005) Inherited apolipoprotein A-V deficiency in severe hypertiglyceridemia. Arterioscler Thromb Vasc Biol 25:411–417CrossRefGoogle Scholar
  6. Pajukanta P, Lilja HE, Sinsheimer JS et al (2004) Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nat Genet 36:322–324CrossRefGoogle Scholar
  7. Peros E, Geroldi G, D’Angelo A et al (2004) Apolipoprotein (a) phenotypes are reliable biomarkers for familial aggregation of coronary heart disease. Int J Mol Med 13:243–247PubMedGoogle Scholar
  8. Reimund M, Larsson M, Kovrov O et al (2015) Evidence for two distinct binding sites for lipoprotein lipase on glycosylphosphtidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHP1). J Biol Chem 290:13919–13934CrossRefPubMedPubMedCentralGoogle Scholar
  9. Saleh M, Kamath BM, Chitayat D (2016) Alagille syndrome: clinical perspectives. Appl Clin Genet 9:75–82CrossRefPubMedPubMedCentralGoogle Scholar
  10. Schmitz G, Orsó E (2015) Lipoprotein(a) hyperlipidemia as cardiovascular risk factor: pathophysiological aspects. Clin Res Cardiol Suppl 10:21–25CrossRefPubMedPubMedCentralGoogle Scholar

Erstbeschreiber

  1. Abifadel M, Varret M, Rabes JP et al (2003) Mutations in the PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34:154–156CrossRefPubMedGoogle Scholar
  2. Alagille D, Odievre M, Gautier M, Dommergues JP (1975) Hepatic ductular hypoplasia associated with characteristic facies, vertebral malformations, retarded physical, mental and sexual development, and cardiac murmur. J Pediatr 86:63–71CrossRefPubMedGoogle Scholar
  3. Bhattacharyya AK, Connor WE (1973) β-Sitosterolemia and xanthomatosis: a newly described lipid storage disease in two sisters. J Clin Invest 52:9aGoogle Scholar
  4. Bodzioch M, Orso E, Klucken J et al (1999) The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 22:347–351CrossRefPubMedGoogle Scholar
  5. Bürger M, Grütz O (1932) Über hepatosplenomegale Lipidose mit xanthomatösen Veränderungen in Haut und Schleimhaut. Arch Dermatol Syph 166:542–547CrossRefGoogle Scholar
  6. Fredrickson DS, Altrocchi PH, Avioli LV et al (1961) Tangier disease – combined clinical staff conference at the National Institutes of Health. Ann Intern Med 55:1016–1031CrossRefGoogle Scholar
  7. Fredrickson DS, Levy RI, Lees RS (1967) Fat transport in lipoproteins – an integrated approach to mechanism and disorders. N Engl J Med 276:32–44, 94–103, 148–156, 215–226, 273–281CrossRefGoogle Scholar
  8. Garcia CK, Wilund K, Arca M et al (2001) Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 292:1394–1398CrossRefPubMedGoogle Scholar
  9. Gofman JW, DeLalla O, Glazier F et al (1954) The serum lipoprotein transport system in health, metabolic disorders, atherosclerosis and coronary heart disease. Plasma 2:413–428Google Scholar
  10. Goldstein JL, Brown MS (1973) Familial hypercholesterolemia: identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with overproduction of cholesterol. Proc Natl Acad Sci USA 20:2804–2806CrossRefGoogle Scholar
  11. Goldstein JL, Schrott HG, Hazzard WR et al (1973) Hyperlipidemia in coronary artery disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 52:1533–1568CrossRefPubMedPubMedCentralGoogle Scholar
  12. Haddad L, Day IN, Hunt S et al (1999) Evidence for a third genetic locus causing familial hypercholesterolemia: a non-LDLR, non-APOB kindred. J Lipid Res 40:1113–1122PubMedGoogle Scholar
  13. Havel R, Gordon RS (1960) Idiopathic hyperlipidemia: metabolic studies in an affected family. J Clin Invest 39:1777–1782CrossRefPubMedPubMedCentralGoogle Scholar
  14. Innerarity TL, Weisgraber KH, Arnold KS et al (1987) Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding. Proc Natl Acad Sci USA 84:6919–6923CrossRefPubMedGoogle Scholar
  15. Khachadurian AK, Uthman M (1973) Experiences with the homozygous cases of familial hypercholesterolemia. A report of 52 cases. Nutr Metab 15:132–140CrossRefPubMedGoogle Scholar
  16. Mahley RW, Angelin B (1984) Type III hyperlipoproteinemia: recent insights into the genetic defect of familial dysbetalipoproteinemia. Adv Intern Med 29:385–411PubMedGoogle Scholar
  17. Müller C (1938) Xanthomata, hypercholesterinemia, angina pectoris. Acta Med Scand Suppl 89:75–80Google Scholar
  18. Soria LF, Ludwig EH, Clarke HR et al (1989) Association between a specific apolipoprotein B mutation and familial defective apo B-100. Proc Natl Acad Sci USA 86:587–591CrossRefPubMedGoogle Scholar
  19. Tada H, Kawashiri MA, Ohtani R et al (2011) A novel type of familial hypercholesterolemia: double heterozygous mutations in LDL receptor and LDL receptor adaptor protein 1 gene. Atherosclerosis 219:663–666CrossRefPubMedGoogle Scholar
  20. Thannhauser SJ, Magendantz H (1938) The different clinical groups of xanthomatous diseases: a clinical physiological study of 22 cases. Ann Intern Med 11:1662–1746CrossRefGoogle Scholar
  21. Utermann G, Jaeschke M, Menzel J (1975) Familial hyperlipoproteinemia type III: deficiency of a specific apolipoprotein (apo E-III) in the very-low-density lipoproteins. FEBS Lett 56:352–355CrossRefPubMedGoogle Scholar
  22. Van Bogaert L, Scherer HJ, Epstein E (1937) Une forme cérébrale de la cholestérinose géneralisée. Masson, ParisGoogle Scholar
  23. Vega GL, Grundy SM (1986) In vitro evidence for reduced binding of low density lipoproteins to receptors as a cause of primary hypercholesterolemia. J Clin Invest 78:1410–1415CrossRefPubMedPubMedCentralGoogle Scholar
  24. Watson GH, Miller V (1973) Arteriohepatic dysplasia: familial pulmonary arterial stenosis with neonatal liver disease. Arch Dis Child 48:459–466CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Abteilung Dermatologie, Umweltmedizin und Gesundheitstheorie, Universität OsnabrückOsnabrückDeutschland
  2. 2.HautarztpraxisGüterslohDeutschland

Section editors and affiliations

  • Roland Kaufmann
    • 1
  1. 1.Direktor der Klinik für Dermatologie, Venerologie und AllergologieKlinikum der J.W.Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations