Advertisement

Linear Secret Sharing Schemes from Error Correcting Codes and Universal Hash Functions

  • Ronald CramerEmail author
  • Ivan Bjerre Damgård
  • Nico Döttling
  • Serge Fehr
  • Gabriele Spini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9057)

Abstract

We present a novel method for constructing linear secret sharing schemes (LSSS) from linear error correcting codes and linear universal hash functions in a blackbox way. The main advantage of this new construction is that the privacy property of the resulting secret sharing scheme essentially becomes independent of the code we use, only depending on its rate. This allows us to fully harness the algorithmic properties of recent code constructions such as efficient encoding and decoding or efficient list-decoding. Choosing the error correcting codes and universal hash functions involved carefully, we obtain solutions to the following open problems:

  • A linear near-threshold secret sharing scheme with both linear time sharing and reconstruction algorithms and large secrets (i.e. secrets of size \(\Omega (n)\)). Thus, the computational overhead per shared bit in this scheme is constant.

  • An efficiently reconstructible robust secret sharing scheme for \(n/3 \le t < (1 - \epsilon ) \cdot n/2\) corrupted players (for any constant \(\epsilon > 0\)) with shares of optimal size \(O(1 + \lambda / n)\) and secrets of size \(\Omega (n + \lambda )\), where \(\lambda \) is the security parameter.

Keywords

Linear Secret Sharing Schemes Linear Time Sharing  Robust Secret Sharing 

References

  1. 1.
    Cascudo, I., Damgård, I., David, B., Giacomelli, I., Nielsen, J.B., Trifiletti, R.: Additively homomorphic uc commitments with optimal computational overhead (2014) (manuscript)Google Scholar
  2. 2.
    Cascudo, I., Chen, H., Cramer, R., Xing, C.: Asymptotically Good Ideal Linear Secret Sharing with Strong Multiplication over Any Fixed Finite Field. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 466–486. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  3. 3.
    Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-Secure Robust Secret Sharing with Compact Shares. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 195–208. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  4. 4.
    Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure Computation from Random Error Correcting Codes. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 291–310. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  5. 5.
    Cramer, R., Damgård, I.B., Fehr, S.: On the Cost of Reconstructing a Secret, or VSS with Optimal Reconstruction Phase. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 503–523. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  6. 6.
    Cramer, R., Damgård, I.B., Maurer, U.M.: General Secure Multi-party Computation from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  7. 7.
    Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of Algebraic Manipulation with Applications to Robust Secret Sharing and Fuzzy Extractors. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  8. 8.
    Damgård, I., David, B., Giacomelli, I., Nielsen, J.B.: Compact vss and efficient homomorphic uc commitments. Cryptology ePrint Archive, Report 2014/370 (2014) (to appear in AsiaCrypt 2014)Google Scholar
  9. 9.
    Druk, E., Ishai, Y.: Linear-time encodable codes meeting the gilbert-varshamov bound and their cryptographic applications. In: ITCS, pp. 169–182 (2014)Google Scholar
  10. 10.
    Garay, J.A., Ishai, Y., Kumaresan, R., Wee, H.: On the Complexity of UC Commitments. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 677–694. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  11. 11.
    Guruswami, V., Indyk, P.: Linear-time encodable/decodable codes with near-optimal rate. IEEE Transactions on Information Theory 51(10), 3393–3400 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Guruswami, V., Rudra, A.: Explicit capacity-achieving list-decodable codes. In: STOC, pp. 1–10 (2006)Google Scholar
  13. 13.
    Guruswami, V., Wang, C.: Linear-algebraic list decoding for variants of reed-solomon codes. IEEE Transactions on Information Theory 59(6), 3257–3268 (2013)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Guruswami, V., Xing, C.: Optimal rate list decoding of folded algebraic-geometric codes over constant-sized alphabets. In: SODA, pp. 1858–1866 (2014)Google Scholar
  15. 15.
    Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions (extended abstracts). In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, Seattle, Washigton, USA, May 14–17, pp. 12–24 (1989)Google Scholar
  16. 16.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11–13, pp. 21–30 (2007)Google Scholar
  17. 17.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant computational overhead. In: STOC, pp. 433–442 (2008)Google Scholar
  18. 18.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer – Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  19. 19.
    Krawczyk, H.: Secret Sharing Made Short. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994) CrossRefGoogle Scholar
  20. 20.
    Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal hashing. In: Proceedings: Fifth Annual Structure in Complexity Theory Conference, Universitat Politècnica de Catalunya, Barcelona, Spain, July 8–11, p. 90 (1990)Google Scholar
  21. 21.
    Massey, J.L.: Some applications of coding theory in cryptography. In: Codes and Ciphers: Cryptography and Coding IV, pp. 33–47 (1995)Google Scholar
  22. 22.
    Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York (2005) CrossRefGoogle Scholar
  23. 23.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, Las Vegas, Nevada, USA, 29 May-1 June, pp. 388–397 (1995)Google Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Ronald Cramer
    • 1
    • 2
    Email author
  • Ivan Bjerre Damgård
    • 3
  • Nico Döttling
    • 3
  • Serge Fehr
    • 1
  • Gabriele Spini
    • 1
    • 2
    • 4
  1. 1.CWIAmsterdamNetherlands
  2. 2.Mathematical InstituteLeiden UniversityLeidenNetherlands
  3. 3.Department of Computer ScienceAarhus UniversityAarhus CDenmark
  4. 4.Institut de Mathématiques de BordeauxUniversity of BordeauxTalenceFrance

Personalised recommendations