Advertisement

How to Efficiently Evaluate RAM Programs with Malicious Security

  • Arash AfsharEmail author
  • Zhangxiang Hu
  • Payman Mohassel
  • Mike Rosulek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9056)

Abstract

Secure 2-party computation (2PC) is becoming practical for some applications. However, most approaches are limited by the fact that the desired functionality must be represented as a boolean circuit. In response, random-access machines (RAM programs) have recently been investigated as a promising alternative representation.

In this work, we present the first practical protocols for evaluating RAM programs with security against malicious adversaries. A useful efficiency measure is to divide the cost of malicious-secure evaluation of \(f\) by the cost of semi-honest-secure evaluation of \(f\). Our RAM protocols achieve ratios matching the state of the art for circuit-based 2PC. For statistical security \(2^{-s}\), our protocol without preprocessing achieves a ratio of \(s\); our online-offline protocol has a pre-processing phase and achieves online ratio \(\sim 2 s / \log T\), where \(T\) is the total execution time of the RAM program.

To summarize, our solutions show that the “extra overhead” of obtaining malicious security for RAM programs (beyond what is needed for circuits) is minimal and does not grow with the running time of the program.

Keywords

Secure Computation Oblivious Transfer Memory Instruction Online Phase Memory Access Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Afshar, A., Hu, Z., Mohassel, P., Rosulek, M.: How to efficiently evaluate ram programs with malicious security. Cryptology ePrint Archive, Report 2014/759 (2014). http://eprint.iacr.org/
  2. 2.
    Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and extensions for faster secure computation. In: Sadeghi, et al. (eds.) [35], pp. 535–548Google Scholar
  3. 3.
    Beaver, D.: Commodity-based cryptography (extended abstract). In: 29th Annual ACM Symposium on Theory of Computing, pp. 446–455. ACM Press, May 1997Google Scholar
  4. 4.
    Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applications to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, et al. (eds.) [43], pp. 784–796Google Scholar
  6. 6.
    Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Chung, K.-M., Pass, R.: A simple ORAM. Cryptology ePrint Archive, Report 2013/243 (2013). http://eprint.iacr.org/2013/243
  8. 8.
    Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, Canetti. (eds.) [36], pp. 643–662Google Scholar
  9. 9.
    Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: MiniLEGO: efficient secure two-party computation from general assumptions. In: Johansson, Nguyen (eds.) [17], pp. 537–556Google Scholar
  10. 10.
    Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  11. 11.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM Press, May 1987Google Scholar
  12. 12.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J. ACM 43(3), 431–473 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis, Y.: Secure two-party computation in sublinear (amortized) time. In: Yu, et al. (eds.) [43], pp. 513–524Google Scholar
  14. 14.
    Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using symmetric cut-and-choose. In: Canetti, Garay (eds.) [6], pp. 18–35Google Scholar
  15. 15.
    Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.: Amortizing garbled circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 458–475. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  16. 16.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  17. 17.
    Johansson, T., Nguyen, P.Q. (eds.): EUROCRYPT 2013. LNCS, vol. 7881. Springer, Heidelberg (2013) zbMATHGoogle Scholar
  18. 18.
    Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function evaluation. In: Yu, et al. (eds.) [43], pp. 797–808Google Scholar
  19. 19.
    Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. Cryptology ePrint Archive, Report 2014/137 (2014). http://eprint.iacr.org/
  20. 20.
    Kiraz, M., Schoenmakers, B.: A protocol issue for the malicious case of yao’s garbled circuit construction. In: 27th Symposium on Information Theory in the Benelux, pp. 283–290 (2006)Google Scholar
  21. 21.
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  22. 22.
    Kreuter, B., Shelat, A., Shen, C.-H.: Billion-gate secure computation with malicious adversaries. In: Proceedings of the 21st USENIX Conference on Security Symposium, p. 14. USENIX Association (2012)Google Scholar
  23. 23.
    Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adversaries. In: Canetti, Garay (eds.) [6], pp. 1–17Google Scholar
  24. 24.
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  25. 25.
    Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  26. 26.
    Lindell, Y., Riva, B.: Cut-and-Choose yao-based secure computation in the online/offline and batch settings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 476–494. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  27. 27.
    Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.: Automating efficient RAM-model secure computation. In: Proceedings of the IEEE Symposium on Security and Privacy (Oakland), May 2014Google Scholar
  28. 28.
    Lu, S., Ostrovsky, R.: How to garble RAM programs. In: Johansson, Nguyen (eds.) [17], pp. 719–734Google Scholar
  29. 29.
    Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party computation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  30. 30.
    Mohassel, P., Riva, B.: Garbled circuits checking garbled circuits: more efficient and secure two-party computation. In: Canetti, Garay (eds.) [6], pp. 36–53Google Scholar
  31. 31.
    Mood, B., Gupta, D., Feigenbaum, J., Butler, K.: Reuse it or lose it: more efficient secure computation through reuse of encrypted values. In: ACM CCS (2014)Google Scholar
  32. 32.
    Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, Canetti (eds.) [36], pp. 681–700Google Scholar
  33. 33.
    Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  34. 34.
    Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  35. 35.
    Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.): ACM CCS 13: 20th Conference on Computer and Communications Security. ACM Press, November 2013Google Scholar
  36. 36.
    Safavi-Naini, R., Canetti, R. (eds.): CRYPTO 2012. LNCS, vol. 7417. Springer, Heidelberg (2012) zbMATHGoogle Scholar
  37. 37.
    Shelat, A., Shen, C.: Two-Output secure computation with malicious adversaries. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  38. 38.
    Shelat, A., Shen, C.-H.: Fast two-party secure computation with minimal assumptions. In: Sadeghi, et al. (eds.) [35], pp. 523–534Google Scholar
  39. 39.
    Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)\(^\text{3 }\)) worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 197–214. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  40. 40.
    Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Yu, X., Devadas, S.: Path ORAM: an extremely simple oblivious RAM protocol. In: Sadeghi, et al. (eds.) [35], pp. 299–310Google Scholar
  41. 41.
    Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE Computer Society Press, November 1982Google Scholar
  42. 42.
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE Computer Society Press, October 1986Google Scholar
  43. 43.
    Yu, T., Danezis, G., Gligor, V.D. (eds.): ACM CCS 12: 19th Conference on Computer and Communications Security. ACM Press, October 2012Google Scholar
  44. 44.
    Zahur, S.: Obliv-c: a lightweight compiler for data-oblivious computation. In: Workshop on Applied Multi-Party Computation. Microsoft Research, Redmond (2014)Google Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Arash Afshar
    • 1
    Email author
  • Zhangxiang Hu
    • 2
  • Payman Mohassel
    • 3
  • Mike Rosulek
    • 2
  1. 1.University of CalgaryCalgaryCanada
  2. 2.Oregon State UniversityCorvallisUSA
  3. 3.Yahoo LabsSunnyvaleUSA

Personalised recommendations