Advertisement

(Batch) Fully Homomorphic Encryption over Integers for Non-Binary Message Spaces

  • Koji NuidaEmail author
  • Kaoru Kurosawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9056)

Abstract

In this paper, we construct a fully homomorphic encryption (FHE) scheme over integers with the message space \(\mathbb {Z}_Q\) for any prime \(Q\). Even for the binary case \(Q=2\), our decryption circuit has a smaller degree than that of the previous scheme; the multiplicative degree is reduced from \(O(\lambda (\log \lambda )^2)\) to \(O(\lambda )\), where \(\lambda \) is the security parameter. We also extend our FHE scheme to a batch FHE scheme.

Keywords

Fully homomorphic encryption Non-binary message 

References

  1. 1.
    Boyar, J., Peralta, R., Pochuev, D.: On the Multiplicative Complexity of Boolean Functions over the Basis \((\wedge,\oplus, 1)\). Theor. Comput. Sci. 235(1), 43–57 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Buhler, J., Lenstra Jr., H.W., Pomerance, C.: Factoring integers with the number field sieve. In: Lenstra, A., Jr. Lenstra, H.W. (eds.) The Development of the Number Field Sieve. Lecture Notes in Mathematics, vol. 1554, pp. 50–94. Springer (1993)Google Scholar
  3. 3.
    Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.: Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divisors: breaking fully-homomorphic-encryption challenges over the integers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 502–519. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  5. 5.
    Cohn, H., Heninger, N.: Approximate Common Divisors via Lattices. IACR Cryptology ePrint Archive 2011/437 (2011)Google Scholar
  6. 6.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryption over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 311–328. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  7. 7.
    Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryption over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  8. 8.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  9. 9.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp. 169–178 (2009)Google Scholar
  10. 10.
    Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 1–16. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  12. 12.
    Lagarias, J.C.: The Computational Complexity of Simultaneous Diophantine Approximation Problems. SIAM J. Comput. 14(1), 196–209 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Lenstra Jr., H.W.: Factoring Integers with Elliptic Curves. Annals of Math., Second Series 126(3), 649–673 (1987)Google Scholar
  14. 14.
    Lucas, E.: Théorie des fonctions numériques simplement périodiques. Amer. J. Math. 1(3), 197–240 (1878)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27, 701–717 (1980)CrossRefzbMATHGoogle Scholar
  16. 16.
    Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  17. 17.
    Smart, N.P., Vercauteren, F.: Fully Homomorphic SIMD Operations. Des. Codes Cryptography 71(1), 57–81 (2014)CrossRefzbMATHGoogle Scholar
  18. 18.
    Stanley, R. P.: Enumerative Combinatorics, 1st edn. vol. I. Cambridge University Press (1997)Google Scholar
  19. 19.

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Japan Science and Technology Agency (JST) PRESTO ResearcherNagoyaJapan
  3. 3.Ibaraki UniversityHitachiJapan

Personalised recommendations