HyComp: An SMT-Based Model Checker for Hybrid Systems

  • Alessandro CimattiEmail author
  • Alberto Griggio
  • Sergio Mover
  • Stefano Tonetta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9035)


HyComp is a model checker for hybrid systems based on Satisfiability Modulo Theories (SMT). HyComp takes as input networks of hybrid automata specified using the HyDI symbolic language. HyComp relies on the encoding of the network into an infinite-state transition system, which can be analyzed using SMT-based verification techniques (e.g. BMC, K-induction, IC3). The tool features specialized encodings of the automata network and can discretize various kinds of dynamics.

HyComp can verify invariant and LTL properties, and scenario specifications; it can also perform synthesis of parameters ensuring the satisfaction of a given (invariant) property. All these features are provided either through specialized algorithms, as in the case of scenario or LTL verification, or applying off-the-shelf algorithms based on SMT. We describe the tool in terms of functionalities, architecture, and implementation, and we present the results of an experimental evaluation.


Hybrid System Hybrid Automaton Bound Model Check Time Automaton Linear Hybrid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ábrahám, E., Becker, B., Klaedtke, F., Steffen, M.: Optimizing bounded model checking for linear hybrid systems. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 396–412. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dang, T., Ivancic, F.: Counterexample-guided predicate abstraction of hybrid systems. Theor. Comput. Sci. 354(2), 250–271 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Asarin, E., Dang, T., Maler, O.: The d/dt Tool for Verification of Hybrid Systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Bengtsson, J.E., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 485–500. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal - a tool suite for automatic verification of real-time systems. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A., Geretti, L., Villa, T.: Assume guarantee verification of nonlinear hybrid systems with ariadne. International Journal of Robust and Nonlinear Control 24(4), 699–724 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bozzano, M., Villafiorita, A.: The FSAP/NuSMV-SA Safety Analysis Platform. STTT 9(1), 5–24 (2007)CrossRefGoogle Scholar
  8. 8.
    Bu, L., Cimatti, A., Li, X., Mover, S., Tonetta, S.: Model checking of hybrid systems using shallow synchronization. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE 2010. LNCS, vol. 6117, pp. 155–169. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S., Roveri, M., Tonetta, S.: The nuXmv Symbolic Model Checker. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  10. 10.
    Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: A tool for checking the refinement of temporal contracts. In: ASE, pp. 702–705 (2013)Google Scholar
  12. 12.
    Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with IC3. In: FMCAD, pp. 165–168 (2013)Google Scholar
  13. 13.
    Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit predicate abstraction. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 46–61. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Verifying LTL properties of hybrid systems with K-liveness. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 424–440. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  15. 15.
    Cimatti, A., Mover, S., Tonetta, S.: Hydi: A language for symbolic hybrid systems with discrete interaction. In: EUROMICRO-SEAA, pp. 275–278 (2011)Google Scholar
  16. 16.
    Cimatti, A., Mover, S., Tonetta, S.: Smt-based scenario verification for hybrid systems. Formal Methods in System Design 42(1), 46–66 (2013)CrossRefzbMATHGoogle Scholar
  17. 17.
    Cimatti, A., Mover, S., Tonetta, S.: Quantifier-free encoding of invariants for hybrid systems. Formal Methods in System Design 45(2), 165–188 (2014)CrossRefzbMATHGoogle Scholar
  18. 18.
    Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT solver. In: Piterman, N., Smolka, S. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Fränzle, M.: What Will Be Eventually True of Polynomial Hybrid Automata? In: Kobayashi, N., Babu, C. S. (eds.) TACS 2001. LNCS, vol. 2215, pp. 340–359. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. STTT 10(3), 263–279 (2008)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Ghilardi, S., Ranise, S.: MCMT: A model checker modulo theories. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22–29. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Henzinger, T.A., Ho, P., Wong-Toi, H.: HYTECH: A Model Checker for Hybrid Systems. STTT 1(1-2), 110–122 (1997)CrossRefzbMATHGoogle Scholar
  25. 25.
    Henzinger, T.A., Ho, P.H.: Hytech: The cornell hybrid technology tool. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1994. LNCS, vol. 999, pp. 265–293. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  26. 26.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292 (1996)Google Scholar
  27. 27.
    Johnson, T.T., Mitra, S.: A small model theorem for rectangular hybrid automata networks. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE 2012. LNCS, vol. 7273, pp. 18–34. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Kindermann, R., Junttila, T., Niemelä, I.: Beyond Lassos: Complete SMT-Based Bounded Model Checking for Timed Automata. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS 2012. LNCS, vol. 7273, pp. 84–100. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. 29.
    Kindermann, R., Junttila, T.A., Niemelä, I.: Bounded Model Checking of an MITL Fragment for Timed Automata. In: ACSD, pp. 216–225 (2013)Google Scholar
  30. 30.
    Kindermann, R., Junttila, T.A., Niemelä, I.: Smt-based induction methods for timed systems. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 171–187. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  31. 31.
    Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic Reachability Computation for Families of Linear Vector Fields. J. Symb. Comput. 32(3), 231–253 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.: SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  33. 33.
    Mover, S., Cimatti, A., Tiwari, A., Tonetta, S.: Time-aware relational abstractions for hybrid systems. In: EMSOFT, pp. 1–10 (2013)Google Scholar
  34. 34.
    Mover, S.: Verification of Hybrid Systems using Satisfiability Modulo Theories. Ph.D. thesis, University of Trento (2014)Google Scholar
  35. 35.
    Platzer, A., Quesel, J.-D.: KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  36. 36.
    Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based abstraction refinement. ACM Trans. Embedded Comput. Syst. 6(1) (2007)Google Scholar
  37. 37.
    Tiwari, A.: HybridSAL Relational Abstracter. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 725–731. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  38. 38.
    Tonetta, S.: Abstract model checking without computing the abstraction. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 89–105. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  39. 39.
    Wang, F.: Symbolic parametric safety analysis of linear hybrid systems with bdd-like data-structures. IEEE Trans. Software Eng. 31(1), 38–51 (2005)CrossRefGoogle Scholar
  40. 40.
    Zutshi, A., Sankaranarayanan, S., Tiwari, A.: Timed Relational Abstractions for Sampled Data Control Systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 343–361. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alessandro Cimatti
    • 1
    Email author
  • Alberto Griggio
    • 1
  • Sergio Mover
    • 1
  • Stefano Tonetta
    • 1
  1. 1.Fondazione Bruno KesslerTrentoItaly

Personalised recommendations