Advertisement

Leakiness is Decidable for Well-Founded Protocols

  • Sibylle FröschleEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9036)

Abstract

A limit to algorithmic verification of security protocols is posed by the fact that checking whether a security property such as secrecy is satisfied is undecidable in general. In this paper we introduce the class of well-founded protocols. It is designed to exclude what seems to be common to all protocols used in undecidability proofs: the protocol syntax ensures that honest information cannot be propagated unboundedly without the intruder manipulating it. We show that the secrecy property of leakiness is decidable for well-founded protocols.

Keywords

Security Protocol Decomposition Tree Source Tree Input Event Proof Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abadi, M., Needham, R.: Prudent engineering practice for cryptographic protocols. IEEE Trans. Softw. Eng. 22(1), 6–15 (1996)CrossRefGoogle Scholar
  2. 2.
    Arapinis, M., Duflot, M.: Bounding messages for free in security protocols. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 376–387. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Blanchet, B., Podelski, A.: Verification of Cryptographic Protocols: Tagging Enforces Termination. Theoretical Computer Science 333(1-2), 67–90 (2005), Special issue FoSSaCS 2003Google Scholar
  4. 4.
    Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. Springer (2003)Google Scholar
  5. 5.
    Chrétien, R., Cortier, V., Delaune, S.: Typing messages for free in security protocols: The case of equivalence properties. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 372–386. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Clark, J., Jacob, J.: A survey of authentication protocol literature: Version 1.0 (1997)Google Scholar
  7. 7.
    Comon-Lundh, H., Cortier, V., Zălinescu, E.: Deciding security properties for cryptographic protocols. application to key cycles. ACM Trans. Comput. Logic 11(9), 9:1–9:42 (2010)Google Scholar
  8. 8.
    Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in cryptographic protocols. Journal of Computer Security 14(1), 1–43 (2006)Google Scholar
  9. 9.
    Dolev, D., Yao, A.C.-C.: On the security of public key protocols (extended abstract). In: FOCS, pp. 350–357 (1981)Google Scholar
  10. 10.
    Dolev, S., Even, S., Karp, R.M.: On the security of ping-pong protocols. Inform. and Control 55(1-3), 57–68 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dougherty, D., Guttman, J.: Decidability for lightweight diffie-hellman protocols. In: CSF 2014, pp. 217–231. IEEE Computer Society (2014)Google Scholar
  12. 12.
    Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Multiset rewriting and the complexity of bounded security protocols. J. of Computer Security 12(2), 247–311 (2004)Google Scholar
  13. 13.
    Even, S., Goldreich, O.: On the security of multi-party ping-pong protocols. In: Symposium on the Foundations of Computer Science, pp. 4–39. IEEE Computer Society (1983)Google Scholar
  14. 14.
    Fröschle, S.: From Security Protocols to Security APIS: Foundations and Verification. To appear in the Information Security and Cryptography series of SpringerGoogle Scholar
  15. 15.
    Fröschle, S.: On well-founded security protocols. In: Joint Workshop on Foundations of Computer Security and Formal and Computational Cryptography (FCS-FCC 2014) (2014)Google Scholar
  16. 16.
    Guttman, J.D., Thayer, F.J.: Authentication tests and the structure of bundles. Theor. Comput. Sci. 283(2), 333–380 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Heintze, N., Tygar, J.D.: A model for secure protocols and their compositions. IEEE Transactions on Software Engineering 22, 2–13 (1996)CrossRefGoogle Scholar
  18. 18.
    Lowe, G.: Towards a completeness result for model checking of security protocols. Journal of Computer Security 7(1), 89–146 (1999)Google Scholar
  19. 19.
    Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large networks of computers. Commun. ACM 21(12), 993–999 (1978)CrossRefzbMATHGoogle Scholar
  20. 20.
    Ramanujam, R., Suresh, S.P.: A decidable subclass of unbounded security protocols. In: WITS 2003, pp. 11–20 (2003)Google Scholar
  21. 21.
    Sarukkai, S., Suresh, S.P.: Tagging makes secrecy decidable with unbounded nonces as well. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 363–374. Springer, Heidelberg (2003)Google Scholar
  22. 22.
    Ramanujam, R., Suresh, S.P.: Decidability of context-explicit security protocols. Journal of Computer Security 13(1), 135–165 (2005)Google Scholar
  23. 23.
    Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions is NP-complete. In: CSFW 2001, pp. 174–187. IEEE Computer Society (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.OFFIS & University of OldenburgOldenburgGermany

Personalised recommendations