Value of Targeting

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8768)


We undertake a formal study of the value of targeting data to an advertiser. As expected, this value is increasing in the utility difference between realizations of the targeting data and the accuracy of the data, and depends on the distribution of competing bids. However, this value may vary non-monotonically with an advertiser’s budget. Similarly, modeling the values as either private or correlated, or allowing other advertisers to also make use of the data, leads to unpredictable changes in the value of data. We address questions related to multiple data sources, show that utility of additional data may be non-monotonic, and provide tradeoffs between the quality and the price of data sources. In a game-theoretic setting, we show that advertisers may be worse off than if the data had not been available at all. We also ask whether a publisher can infer the value an advertiser would place on targeting data from the advertiser’s bidding behavior and illustrate that this is impossible.


Bidding Strategy Multiple Data Source Price Auction Impression Type Bidding Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, I., Athey, S., Babaioff, M., Grubb, M.: Peaches, lemons, and cookies: Designing auction markets with dispersed information. Technical report, Microsoft Research (May 2013)Google Scholar
  2. 2.
    Babaioff, M., Kleinberg, R., Leme, R.P.: Optimal mechanisms for selling information. In: Faltings, et al. (eds.) [8], pp. 92–109Google Scholar
  3. 3.
    Bergemann, D., Bonatti, A.: Targeting in advertising markets: Implications for offline vs. online media. RAND Journal of Economics 42(3), 414–443 (2011)CrossRefGoogle Scholar
  4. 4.
    Bharadwaj, V., Chen, P., Ma, W., Nagarajan, C., Tomlin, J., Vassilvitskii, S., Vee, E., Yang, J.: Shale: An efficient algorithm for allocation of guaranteed display advertising. In: Yang, Q., Agarwal, D., Pei, J. (eds.) KDD, pp. 1195–1203. ACM (2012)Google Scholar
  5. 5.
    Bhawalkar, K., Hummel, P., Vassilvitskii, S.: Value of targeting. ArXiv:1407.3338 [cs.GT]Google Scholar
  6. 6.
    Chen, Y., Berkhin, P., Anderson, B., Devanur, N.R.: Real-time bidding algorithms for performance-based display ad allocation. In: Apté, C., Ghosh, J., Smyth, P. (eds.) KDD, pp. 1307–1315. ACM (2011)Google Scholar
  7. 7.
    Emek, Y., Feldman, M., Gamzu, I., Leme, R.P., Tennenholtz, M.: Signaling schemes for revenue maximization. In: Faltings, et al. (eds.) [8], pp. 514–531Google Scholar
  8. 8.
    Faltings, B., Leyton-Brown, K., Ipeirotis, P. (eds.): ACM Conference on Electronic Commerce, EC 2012, Valencia, Spain, June 4-8. ACM (2012)Google Scholar
  9. 9.
    Fu, H., Jordan, P., Mahdian, M., Nadav, U., Talgam-Cohen, I., Vassilvitskii, S.: Ad auctions with data. In: Serna, M. (ed.) SAGT 2012. LNCS, vol. 7615, pp. 168–179. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Ghosh, A., Mahdian, M., McAfee, R.P., Vassilvitskii, S.: To match or not to match: Economics of cookie matching in online advertising. In: Faltings, et al. (eds.) [8], pp. 741–753Google Scholar
  11. 11.
    Ghosh, A., McAfee, P., Papineni, K., Vassilvitskii, S.: Bidding for representative allocations for display advertising. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 208–219. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Ghosh, A., Nazerzadeh, H., Sundararajan, M.: Computing optimal bundles for sponsored search. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 576–583. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Ghosh, A., Rubinstein, B.I.P., Vassilvitskii, S., Zinkevich, M.: Adaptive bidding for display advertising. In: Quemada, J., León, G., Maarek, Y.S., Nejdl, W. (eds.) WWW, pp. 251–260. ACM (2009)Google Scholar
  14. 14.
    Hummel, P., McAfee, R.P.: When does improved targeting increase revenue? Technical report, Google Inc. (April 2014)Google Scholar
  15. 15.
    Milgrom, P.R., Weber, R.J.: A theory of auctions and competitive bidding. Econometrica 50(5), 1089–1122 (1982)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Google, Inc.USA

Personalised recommendations