Advertisement

Three-Way Decisions in Stochastic Decision-Theoretic Rough Sets

  • Dun LiuEmail author
  • Tianrui Li
  • Decui Liang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8449)

Abstract

In the previous decision-theoretic rough sets (DTRS), its loss function values are precise. This paper extends the precise values of loss functions to a more realistic stochastic environment. The stochastic loss functions are induced to decision-theoretic rough set theory based on the bayesian decision theory. A model of stochastic decision-theoretic rough set theory (SDTRS) is built with respect to the minimum bayesian expected risk. The corresponding propositions and criteria of SDTRS are also analyzed. Furthermore, we investigate two special SDTRS models under the uniform distribution and the normal distribution, respectively. Finally, an empirical study of Public-Private Partnerships (PPP) project investment validates the reasonability and effectiveness of the proposed models.

Keywords

Decision-theoretic rough sets Confidence interval Statistic distribution Stochastic 

Notes

Acknowledgements

This paper is an extended version of the paper published in the proceedings of RSKT2012. This work is partially supported by the National Science Foundation of China (Nos. 71201133, 61175047, 71090402, 71201076), the Youth Social Science Foundation of the Chinese Education Commission (No. 11YJC630127), the Research Fund for the Doctoral Program of Higher Education of China (No. 20120184120028), the China Postdoctoral Science Foundation (Nos. 2012M520310, 2013T60132) and the Fundamental Research Funds for the Central Universities of China (No. SWJTU12CX117).

References

  1. 1.
    Abd El-Monsef, M.M.E., Kilany, N.M.: Decision analysis via granulation based on general binary relation. Int. J. Math. Math. Sci. (2007). doi: 10.1155/2007/12714. Article ID 12714MathSciNetCrossRefGoogle Scholar
  2. 2.
    Abbas, A.R., Juan, L.: Supporting e-learning system with modified Bayesian rough set model. In: Yu, W., He, H., Zhang, N. (eds.) ISNN 2009, Part II. LNCS, vol. 5552, pp. 192–200. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Beynon, M.J., Peel, M.J.: Variable precision rough set theory and data discretisation: an application to corporate failure prediction. Omega 29, 561–576 (2001)CrossRefGoogle Scholar
  4. 4.
    Deng, X., Yao, Y.: An information-theoretic interpretation of thresholds in probabilistic rough sets. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS (LNAI), vol. 7414, pp. 369–378. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)zbMATHGoogle Scholar
  6. 6.
    Forster, M.R.: Key concepts in model selection: performance and generalizability. J. Math. Psychol. 44, 205–231 (2000)CrossRefGoogle Scholar
  7. 7.
    Goudey, R.: Do statistical inferences allowing three alternative decision give better feedback for environmentally precautionary decision-making. J. Environ. Manag. 85, 338–344 (2007)CrossRefGoogle Scholar
  8. 8.
    Herbert, J.P., Yao, J.T.: Game-theoretic rough sets. Fundam. Inform. 108, 267–286 (2011)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Jia, X.Y., Liao, W.H., Tang, Z.M., Shang, L.: Minimum cost attribute reduction in decision-theoretic rough set models. Inf. Sci. 219, 151–167 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Li, H.X., Zhou, X.Z.: Risk decision making based on decision-theoretic rough set: a three-way view decision model. Int. J. Comput. Intell. Syst. 4, 1–11 (2011)CrossRefGoogle Scholar
  11. 11.
    Li, H.X., Zhou, X.Z., Zhao, J.B., Liu, D.: Non-monotonic attribute reduction in decision-theoretic rough sets. Fundam. Inform. 126, 415–432 (2013)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Liang, D.C., Liu, D., Pedrycz, W., Hu, P.: Triangular fuzzy decision-theoretic rough sets. Int. J. Approx. Reason. 54, 1087–1106 (2013)CrossRefGoogle Scholar
  13. 13.
    Lingras, P., Chen, M., Miao, D.Q.: Rough cluster quality index based on decision theory. IEEE Trans. Knowl. Data Eng. 21, 1014–1026 (2009)CrossRefGoogle Scholar
  14. 14.
    Lingras, P., Chen, M., Miao, D.Q.: Semi-supervised rough cost/benefit decisions. Fundam. Inform. 94, 233–244 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Liu, D., Li, H.X., Zhou, X.Z.: Two decades’ research on decision-theoretic rough sets. In: Proceedings of 9th IEEE International Conference on Cognitive Informatics, pp. 968–973 (2010)Google Scholar
  16. 16.
    Liu, D., Yao, Y.Y., Li, T.R.: Three-way investment decisions with decision-theoretic rough sets. Int. J. Comput. Intell. Syst. 4, 66–74 (2011)CrossRefGoogle Scholar
  17. 17.
    Liu, D., Li, T.R., Ruan, D.: Probabilistic model criteria with decision-theoretic rough sets. Inf. Sci. 181, 3709–3722 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Liu, D., Li, T., Liang, D.: A new discriminant analysis approach under decision-theoretic rough sets. In: Yao, J.T., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS (LNAI), vol. 6954, pp. 476–485. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Liu, D., Li, T.R., Li, H.X.: A multiple-category classification approach with decision-theoretic rough sets. Fundam. Inform. 115, 173–188 (2012)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Liu, D., Li, T., Liang, D.: Decision-theoretic rough sets with probabilistic distribution. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS (LNAI), vol. 7414, pp. 389–398. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Liu, D., Li, T.R., Liang, D.C.: Three-way government decision analysis with decision-theoretic rough sets. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 20, 119–132 (2012)CrossRefGoogle Scholar
  22. 22.
    Liu, D., Li, T.R., Li, H.X.: Interval-valued decision-theoretic rough sets. Comput. Sci. 39(7), 178–181 (2012). (in chinese)Google Scholar
  23. 23.
    Liu, D., Li, T.R., Liang, D.C.: Fuzzy decision-theoretic rough sets. Comput. Sci. 39(12), 25–29 (2012). (in chinese)Google Scholar
  24. 24.
    Liu, D., Li, T.R., Liang, D.C.: Incorporating logistic regression to decision-theoretic rough sets for classifications. Int. J. Approx. Reason. 55, 197–210 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Liu, D., Li, T.R., Liang, D.C.: Fuzzy interval decision-theoretic rough sets. In: Proceedings of 2013 IFSA World Congress NAFIPS Annual Meeting, pp. 1315–1320 (2013)Google Scholar
  26. 26.
    Ma, W.M.: On relationship between probabilistic rough set and Bayesian risk decision over two universes. Int. J. Gen. Syst 41, 225–245 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Macmillan, F.: Risk, uncertainty and investment decision-making in the upstream oil and gas industry. Ph.D thesis, University of Aberdeen, UK (2000)Google Scholar
  28. 28.
    Min, F., He, H.P., Qian, Y.H., Zhu, W.: Test-cost-sensitive attribute reduction. Inf. Sci. 181, 4928–4942 (2011)CrossRefGoogle Scholar
  29. 29.
    Min, F., Zhu, W.: Attribute reduction of data with error ranges and test costs. Inf. Sci. 211, 48–67 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Mishra, A., Mishra, M., Shiv, B.: In praise of vagueness: malleability of vague information as a performance-booster. Psychol. Sci. 22, 733–738 (2012)CrossRefGoogle Scholar
  31. 31.
    Pauker, S.G., Kassirer, J.P.: The threshold approach to clinical decision making. N. Engl. J. Med. 302, 1109–1117 (1980)CrossRefGoogle Scholar
  32. 32.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)CrossRefGoogle Scholar
  33. 33.
    Pawlak, Z., Wong, S.K.M., Ziarko, W.: Rough sets: probabilistic versus deterministic approach. Int. J. Man Mach. Stud. 29, 81–95 (1988)CrossRefGoogle Scholar
  34. 34.
    Pawlak, Z.: Rough Wets, Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers Press, Dordrecht (1991)zbMATHGoogle Scholar
  35. 35.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundam. Inform. 27, 245–253 (1996)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Ślȩzak, D.: Rough sets and Bayes factor. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 202–229. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  37. 37.
    Ślȩzak, D., Ziarko, W.: The investigation of the Bayesian rough set model. Int. J. Approx. Reason. 40, 81–91 (2005)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Ślȩzak, D., Wróblewski, J., Eastwood, V., Synak, P.: Brighthouse: an analytic data warehouse for ad-hoc queries. Proc. VLDB Endow. 1, 1337–1345 (2008)CrossRefGoogle Scholar
  39. 39.
    Woodward, P.W., Naylor, J.C.: An application of Bayesian methods in SPC. The Statistician 42, 461–469 (1993)CrossRefGoogle Scholar
  40. 40.
    Xie, G., Yue, W., Wang, S.Y., Lai, K.K.: Dynamic risk management in petroleum project investment based on a variable precision rough set model. Technol. Forecast. Soc. Chang. 77, 891–901 (2010)CrossRefGoogle Scholar
  41. 41.
    Yang, X.P., Yao, J.T.: Modelling multi-agent three-way decisions with decision-theoretic rough sets. Fundam. Inform. 115, 157–171 (2012)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Yao, J.T., Herbert, J.P.: Web-based support systems with rough set analysis. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 360–370. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  43. 43.
    Yao, Y.Y., Wong, S.K.M., Lingras, P.: A decision-theoretic rough set model. In: Proceedings of the 5th International Symposium on Methodologies for Intelligent Systems, pp. 17–25 (1990)Google Scholar
  44. 44.
    Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximating concepts. Int. J. Man Mach. Stud. 37, 793–809 (1992)CrossRefGoogle Scholar
  45. 45.
    Yao, Y.Y.: Probabilistic approaches to rough sets. Expert Syst. 20, 287–297 (2003)CrossRefGoogle Scholar
  46. 46.
    Yao, Y.: Decision-theoretic rough set models. In: Yao, J.T., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  47. 47.
    Yao, Y.Y.: Probabilistic rough set approximations. Int. J. Approx. Reason. 49, 255–271 (2008)CrossRefGoogle Scholar
  48. 48.
    Yao, Y.Y., Zhao, Y.: Attribute reduction in decision-theoretic rough set models. Inf. Sci. 178, 3356–3373 (2008)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Yao, Y.: Three-way decision: an interpretation of rules in rough set theory. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 642–649. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  50. 50.
    Yao, Y.Y.: Three-way decisions with probabilistic rough sets. Inf. Sci. 180, 341–353 (2010)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Yao, Y., Zhou, B.: Naive Bayesian rough sets. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS (LNAI), vol. 6401, pp. 719–726. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  52. 52.
    Yao, Y.Y.: The superiority of three-way decision in probabilistic rough set models. Inf. Sci. 181, 1080–1096 (2011)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Yao, Y.Y.: Two semantic issues in a probabilistic rough set model. Fundam. Inform. 108, 249–265 (2011)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Yao, Y., Zhou, B.: Naive Bayesian Rough Sets. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS, vol. 6401, pp. 719–726. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  55. 55.
    Yao, Y.: An outline of a theory of three-way decisions. In: Yao, J.T., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS (LNAI), vol. 7413, pp. 1–17. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  56. 56.
    Yusgiantoro, P., Hsiao, F.S.T.: Production-sharing contracts and decision-making in oil production. Energy Econ. 10, 245–256 (1993)CrossRefGoogle Scholar
  57. 57.
    Zhao, W.Q., Zhu, Y.L.: An email classification scheme based on decision-theoretic rough set theory and analysis of email security. In: Proceedings of 2005 IEEE Region 10 TENCON, pp. 1–6 (2005)Google Scholar
  58. 58.
    Zhao, Y., Wong, S.K.M., Yao, Y.: A note on attribute reduction in the decision-theoretic rough set model. In: Peters, J.F., Skowron, A., Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) Transactions on Rough Sets XIII. LNCS, vol. 6499, pp. 260–275. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  59. 59.
    Zhou, B., Yao, Y.Y., Luo, J.G.: A three-way decision approach to email spam filtering. In: Proceedings of 23th Canadian AI, pp. 28–39 (2010)CrossRefGoogle Scholar
  60. 60.
    Zhou, B.: A new formulation of multi-category decision-theoretic rough sets. In: Yao, J.T., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS (LNAI), vol. 6954, pp. 514–522. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  61. 61.
    Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46, 39–59 (1993)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Ziarko, W.: Probabilistic approach to rough set. Int. J. Approx. Reason. 49, 272–284 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Economics and ManagementSouthwest Jiaotong UniversityChengduPeople’s Republic of China
  2. 2.School of Information Science and TechnologySouthwest Jiaotong UniversityChengduPeople’s Republic of China
  3. 3.School of Management and EconomicsUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations