Advertisement

Beobachterentwurf mittels exakter bzw. näherungsweiser Linearisierung der Fehlerdynamik

  • Klaus Röbenack
Chapter

Zusammenfassung

Normalformen spielen beim Entwurf nichtlinearer Beobachter eine große Rolle. Kann man ein System in eine Form überführen, bei der die Nichtlinearitäten ausschließlich von den Messgrößen abhängen, ist der Entwurf eines Beobachters mit exakt linearer Fehlerdynamik vergleichsweise einfach. Eine solche Form ist die Beobachternormalform. Die Transformation in diese Form und damit verbunden die Linearisierung des Beobachtungsfehlers ist aufgrund restriktiver Existenzbedingungen bzw. einer aufwendigen Berechnung in der regelungstechnischen Praxis kaum anzutreffen. Bei genauerer Betrachtung eröffnen sich jedoch etliche Möglichkeiten zur Berechnung bzw. zur Approximation eines Beobachters mit linearer Fehlerdynamik. In diesem Kapitel werden Existenzbedingungen und Berechnungsmethoden vorgestellt.

Literatur

  1. [Ack77a]
    Ackermann, J.: Entwurf durch Polvorgabe, Teil 2. Regelungstechnik, 25:209–215, 1977.Google Scholar
  2. [Ack77b]
    Ackermann, J. E.: On the synthesis of linear control systems with specified characteristics. Automatica, 13(1):89–94, Januar 1977.MathSciNetzbMATHGoogle Scholar
  3. [AP90]
    Arrowsmith, D. K. und C. M. Place: An Introduction to Dynamical Systems. Cambridge University Press, Cambridge, 1990.zbMATHGoogle Scholar
  4. [Bir92]
    Birk, J.: Rechnergestützte Analyse und Synthese nichtlinearer Beobachtungsaufgaben, Band 294 der Reihe VDI-Fortschrittsberichte, Reihe 8: Meß-, Steuerungs- und Regelungstechnik. VDI-Verlag, Düsseldorf, 1992.Google Scholar
  5. [BL95]
    Bortoff, S. und A. Lynch: Synthesis of optimal nonlinear observers. In: Proc. Conf. on Decision and Control (CDC), Seiten 95–100, New Orleans, Louisiana, 1995.Google Scholar
  6. [BNRZ00]
    Bindel, R., R. Nitsche, R. Rothfuß und M. Zeitz: Flachheitsbasierte Regelung eines hydraulischen Antriebs mit zwei Ventilen für einen Großmanipulator. Automatisierungstechnik, 48(3):124–131, 2000.Google Scholar
  7. [BR86]
    Baumann, W. T. und W. J. Rugh: Feedback Control of Nonlinear Systems by Extended Linearization. IEEE Trans. on Automatic Control, 31(1):40–46, Januar 1986.MathSciNetzbMATHGoogle Scholar
  8. [Bru70]
    Brunovský, P.: A classification of linear controllable systems. Kybernetica, 6(3):173–188, 1970.MathSciNetzbMATHGoogle Scholar
  9. [BS97]
    Banaszuk, A. und W. Sluis: On nonlinear observers with approximately linear error dynamics. In: Proc. American Control Conf. (ACC), Seiten 3460–3464, Albuquerque, Juni 1997.Google Scholar
  10. [BS02]
    Back, J. und J. H. Seo: Immersion Technique for Nonlinear Observer Design. In: Proc. American Control Conf. (ACC), Seiten 2645–2646, Mai 2002.Google Scholar
  11. [BSS05]
    Back, J., H. Shim und J. H. Seo: An algorithm for system immersion into nonlinear observer form: forced systems. In: Preprints IFAC World Congress, Prague, Czech Republic, Juli 2005.Google Scholar
  12. [BZ83]
    Bestle, D. und M. Zeitz: Canonical form observer design for non-linear time-variable systems. Int. J. Control, 38(2):419–431, 1983.zbMATHGoogle Scholar
  13. [BZ88]
    Birk, J. und M. Zeitz: Extended Luenberger observer for non-linear multivariable systems. Int. J. Control, 47(6):1823–1836, 1988.zbMATHGoogle Scholar
  14. [BZ89]
    Birk, J. und M. Zeitz: Computer-aided design of nonlinear observers. In: Proc. IFAC-Symbposium Nonlinear Control System Design, Capri, Italy, 1989.Google Scholar
  15. [BZ90]
    Birk, J. und M. Zeitz: Anwendung eines symbolverarbeitenden Programmsystems zur Analyse und Synthese von Beobachtern für nichtlineare Systeme. Messen, Steuern, Regeln, 33(12):536–543, 1990.Google Scholar
  16. [CFG+02]
    Corliss, G., Ch. Faure, A. Griewank, L. Hascoet und U. Naumann (Herausgeber): Automatic Differentiation: From Simulation to Optimization. Springer-Verlag, New York, 2002.zbMATHGoogle Scholar
  17. [CMG93]
    Ciccarella, G., M. Dalla Mora und A. Germani: A Luenberger-like Observer for Nonlinear Systems. Int. J. Control, 57(3):537–556, 1993.MathSciNetzbMATHGoogle Scholar
  18. [CTvB95]
    Cheb-Terrab, E. S. und K. von Bülow: A Computational Approach for the Analytical Solving of Partial Differential Equations. Computer Physics Communications, 90:102–116, 1995.zbMATHGoogle Scholar
  19. [DB06]
    Deutscher, J. und M. Bäuml: Design of nonlinear observers with approximately linear error dynamics using multivariable Legendre polynomials. Int. J. of Robust and Nonlinear Control, 2006.zbMATHGoogle Scholar
  20. [Deu07]
    Deutscher, J.: Entwurf nichtlinearer Beobachter für autonome Systeme basierend auf dem Hilfssatz von Lyapunov. Automatisierungstechnik, 55(9):468–476, 2007.Google Scholar
  21. [DMGM97]
    Dalla Mora, M., A. Germani und C. Manes: A state observer for nonlinear dynamical systems. Nonlinear Analysis, Theory, Methods & Applications, 30(7):4485–4496, 1997.MathSciNetzbMATHGoogle Scholar
  22. [EK02]
    Engel, R. und G. Kreisselmeier: A Continuous-Time Observer Which Converges in Finite Time. IEEE Trans. on Automatic Control, 47(7):1202–1204, Juli 2002.MathSciNetzbMATHGoogle Scholar
  23. [FLMR95]
    Fliess, M., J. Lévine, P. Martin und P. Rouchon: Flatness and defect of non-linear systems: Introductory Theory and Examples. Int. J. Control, 61:1327–1361, 1995.MathSciNetzbMATHGoogle Scholar
  24. [FR96]
    Fliess, M. und J. Rudolph: Local “tracking observers” for flat systems. In: Proc. Symposium on Control, Optimization and Supervision, IMACS Multiconference Computational Engineering in Systems Applications, Seiten 213–217, Lille, France, Juli 1996.Google Scholar
  25. [GB81]
    Gauthier, J. P. und G. Bornard: Observability for any u(t) of a Class of Nonlinear Systems. IEEE Trans. on Automatic Control, 26(4):922–926, 1981.MathSciNetzbMATHGoogle Scholar
  26. [GH83]
    Guckenheimer, J. und P. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York, 1983.zbMATHGoogle Scholar
  27. [GHO92]
    Gauthier, J. P., H. Hammouri und S. Othman: A Simple Observer for Nonlinear Systems — Application to Bioreactors. IEEE Trans. on Automatic Control, 37(6):875–880, 1992.MathSciNetzbMATHGoogle Scholar
  28. [GMP96]
    Glumineau, A., C. H. Moog und F. Plestan: New Algebro-Geometric Conditions for the Linearization by Input-Output Injection. IEEE Trans. on Automatic Control, 41(4):598–603, April 1996.MathSciNetzbMATHGoogle Scholar
  29. [Gua02]
    Guay, M.: Observer linearization by output-dependent time-scale transformations. IEEE Trans. on Automatic Control, 47(10):1730–1735, Oktober 2002.MathSciNetzbMATHGoogle Scholar
  30. [GW08]
    Griewank, A. und A. Walther: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia, 2, 2008.zbMATHGoogle Scholar
  31. [Jel95]
    Jelali, M.: Systematischer Beobachterentwurf für nichtlineare Systeme. Forschungsbericht 1/95, Gerhard-Mercator-Universität-GH Duisburg, Meß-, Steuer- und Regelungstechnik, 1995.Google Scholar
  32. [Jet89]
    Jetschke, Gottfried: Mathematik der Selbstorganisation. VEB Deutscher Verlag der Wissenschaften, Berlin, 1989.zbMATHGoogle Scholar
  33. [JRT85]
    Jakubczyk, B., W. Respondek und K. Tchon (Herausgeber): Geometric Theory of Nonlinear Control Systems. Technical University of Wroclaw, 1985.zbMATHGoogle Scholar
  34. [JS95]
    Jelali, M. und H. Schwarz: Nonlinear Identification of Hydraulic Servo-Drive Systems. IEEE Control Systems Magazine, 15(5):17–22, Oktober 1995.Google Scholar
  35. [JS00]
    Jo, N. H. und J. H. Seo: Input Output Linearization Approach to State Observer Design for Nonlinear System. IEEE Trans. on Automatic Control, 45(12):2388–2393, 2000.MathSciNetzbMATHGoogle Scholar
  36. [JS02]
    Jo, N. H. und J. H. Seo: Observer design for non-linear systems that are not uniformly observable. Int. J. Control, 75(5):369–380, 2002.MathSciNetzbMATHGoogle Scholar
  37. [Kar89]
    Karahan, S.: Higher degree linear approximations of nonlinear systems. Dissertation, University of California, Davis, 1989.Google Scholar
  38. [Kel86a]
    Keller, H.: Entwurf nichtlinearer Beobachter mittels Normalformen. VDI-Verlag, 1986.Google Scholar
  39. [Kel86b]
    Keller, H.: Entwurfnichtlinearer, zeitvarianter Beobachter durch Polvorgabe mit Hilfe einer Zwei-Schritt-Transformation. Automatisierungstechnik, 34(7, 8): 271–274, 326–331, 1986zbMATHGoogle Scholar
  40. [Kel87]
    Keller, H.: Non-linear observer design by transformation into a generalized observer canonical form. Int. J. Control, 46(6):1915–1930, 1987.zbMATHGoogle Scholar
  41. [KHK+91]
    Krener, A., M. Hubbard, S. Karaham, A. Phelps und B. Maag: Poincaré’s linearization method applied to the design of nonlinear compensators. In: Algebraic computing in control, Band 165 der Reihe Lecture Notes in Control and Information Science, Seiten 76–114. Springer, 1991Google Scholar
  42. [KI83]
    Krener, A. J. und A. Isidori: Linearization by output injection and nonlinear observers. Systems & Control Letters, 3:47–52, 1983MathSciNetzbMATHGoogle Scholar
  43. [KK98]
    Kazantzis, N. und C. Kravaris: Nonlinear Observer Design Using Lyapunov’s Auxiliary Theorem. Systems & Control Letters, 34:241–247, 1998.MathSciNetzbMATHGoogle Scholar
  44. [KR85]
    Krener, A. J. und W. Respondek: Nonlinear observers with linearizable error dynamics. SIAM J. Control and Optimization, 23(2):197–216, 1985.MathSciNetzbMATHGoogle Scholar
  45. [KX02]
    Krener, A. und M. Xiao: Nonlinear observer design in the Siegel domain. SIAM J. Control and Optimization, 41(3):932–953, 2002.MathSciNetzbMATHGoogle Scholar
  46. [LB97]
    Lynch, A. F. und S. A. Bortoff: Nonlinear observer design by approximate error linearization. Systems & Control Letters, 32(3):161–172, 1997.MathSciNetzbMATHGoogle Scholar
  47. [LT86]
    Li, C. W. und L. W. Tao: Observing non-linear time-variable systems through a canonical form observer. Int. J. Control, 44(6):1703–1713, 1986.77MathSciNetzbMATHGoogle Scholar
  48. [Lud95]
    Ludyk, G.: Theoretische Regelungstechnik 2: Zustandsrekonstruktion, optimale und nichtlineare Regelungssysteme. Springer-Verlag, Berlin, Heidelberg, 1995.zbMATHGoogle Scholar
  49. [Mar90]
    Marino, R.: Adaptive Observers for Single Output Nonlinear Systems. IEEE Trans. on Automatic Control, 35(9):1054–1058, September 1990.MathSciNetzbMATHGoogle Scholar
  50. [MFA03]
    Menold, P. H., R. Findeisen und F. Allgöwer: Finite time convergent observers for nonlinear systems. In: Proc. IEEE CConf. on Decision and Control (CDC), Seiten 5673–5678. Maui, Hawaii, USA, Dezember 2003Google Scholar
  51. [MGG05]
    Meurer, Th., K. Graichen und E. D. Gilles (Herausgeber): Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems, Band 322 der Reihe Lecture Notes in Control and Information Science, Berlin, Heidelberg, 2005. Springer-Verlag.Google Scholar
  52. [Mis05]
    Mishkov, R. L.: Nonlinear observer design by reduced generalized observer canonical form. Int. J. Control, 78(3):172–185, 2005.MathSciNetzbMATHGoogle Scholar
  53. [Mor06]
    Moreno, J. A.: Approximate Observer Error Linearization by Dissipativity. In: Meurer, Th.et al.Google Scholar
  54. [MGG05]
    , Seiten 35–51.Google Scholar
  55. [MT92]
    Marino, R. und P. Tomei: Global Adaptive Observers for Nonlinear Systems via Filtered Transformations. IEEE Trans. on Automatic Control, 37(8):1239–1245, August 1992.MathSciNetzbMATHGoogle Scholar
  56. [MT95a]
    Marino, R. und P. Tomei: Adaptive Observers with Arbitrary Exponential Rate of Convergence for Nonlinear Systems. IEEE Trans. on Automatic Control, 40(7):1300–1304, Juli 1995.MathSciNetzbMATHGoogle Scholar
  57. [MT95b]
    Marino, R. und P. Tomei: Nonlinear Control Design: Geometric, Adaptive and Robust. Prentice Hall, London, 1995.zbMATHGoogle Scholar
  58. [Nam97]
    Nam, K.: An approximate nonlinear observer with polynomial coordinate transformation maps. IEEE Trans. on Automatic Control, 42(4):522–527, 1997.MathSciNetzbMATHGoogle Scholar
  59. [NF99]
    Nijmeijer, H. und T. I. Fossen (Herausgeber): New Directions in Nonlinear Observer Design, Band 244 der Reihe Lecture Notes in Control and Information Science. Springer-Verlag, London, 1999.Google Scholar
  60. [NJS01]
    Noh, D., N. H. Jo und J. H. Seo: Nonlinear Observer Design by Dynamic Error Linearization. In: Proc. European Control Conference (ECC), Seminario de Vilar, Porto, Portugal, September 2001.Google Scholar
  61. [NJS04]
    Noh, D., N. H. Jo und J. H. Seo: Nonlinear observer design by dynamic observer error linearization. IEEE Trans. on Automatic Control, 49(10):1746–1750, Oktober 2004.MathSciNetzbMATHGoogle Scholar
  62. [NM97]
    Nijmeijer, H. und I. M. Y. Mareels: An Observer Looks at Synchronization. IEEE Trans. on Circuits and Systems I, 44(10):882–890, 1997.MathSciNetGoogle Scholar
  63. [NTT88]
    Nicosia, S., P. Tomei und A. Tornambe: A Nonlinear Observer for Elastic Robots. IEEE J. of Robotics and Automation, 4(1):45—52, Februar 1988.Google Scholar
  64. [NTT89]
    Nicosia, S., P. Tomei und A. Tornambé: An Approximate Observer for a Class of nonlinear Systems. Systems & Control Letters, 12:43–51, 1989.MathSciNetzbMATHGoogle Scholar
  65. [PG97]
    Plestan, F. und A. Glumineau: Linearization by generalized input-output injection. Systems & Control Letters, 31:115–128, 1997.MathSciNetzbMATHGoogle Scholar
  66. [Phe91]
    Phelps, A. R.: On constructing nonlinear observers. SIAM J. Control and Optimization, 29(3):516–534, 1991.MathSciNetzbMATHGoogle Scholar
  67. [PK88]
    Phelps, A. R. und A. J. Krener: Computation of observer normal form using MACSYMA. In: Byrnes, C., C. Martin und R. Seaks (Herausgeber): Analysis and Control of Nonlinear Systems, Seiten 475–482. North Holland, New York, 1988.zbMATHGoogle Scholar
  68. [PM93]
    Proychev, T. Ph. und R. L. Mishkov: Transformation of Nonlinear Systems in Observer Canonical Form With Reduced Dependency on Derivatives of the Input. Automatica, 29(2):495–498, 1993.MathSciNetzbMATHGoogle Scholar
  69. [PM04]
    Prochaska, M. und W. Mathis: On limit cycles in singularly perturbed electrical circuits. In: Proc. of the 16th Symp. on Math. Theory of Networks and Systems (MTNS), Leuven, 2004.Google Scholar
  70. [Raj98]
    Rajamani, R.: Observers for Lipschitz Nonlinear Systems. IEEE Trans. on Automatic Control, 43(3):397–401, 1998.MathSciNetzbMATHGoogle Scholar
  71. [RH94]
    Raghavan, S. und J. K. Hedrick: Observer design for a class of nonlinear systems. Int. J. Control, 59(2):515–528, 1994.MathSciNetzbMATHGoogle Scholar
  72. [RL04]
    Röbenack, K. und A. F. Lynch: An efficient method for observer design with approximately linear error dynamics. Int. J. Control, 77(7):607–612, Mai 2004.MathSciNetzbMATHGoogle Scholar
  73. [RL06]
    Röbenack, K. und A. F. Lynch: Observer Design Using a Partial Nonlinear Observer Canonical Form. Applied Mathematics and Computer Science, 16(3):333–343, 2006.MathSciNetzbMATHGoogle Scholar
  74. [RL07]
    Röbenack, K. und A. F. Lynch: High-Gain nonlinear observer design using the observer canonical form. IET Control Theory & Applications, 1(6):1574–1579, 2007.Google Scholar
  75. [Röb03]
    Röbenack, K.: Beobachterentwurf für nichtlineare Zustandssysteme mit Hilfe des Automatischen Differenzier ens. Shaker-Verlag, Aachen, 2003.Google Scholar
  76. [Röb04a]
    Röbenack, K.: An Approximation of Normal Form Observer Design: Convergence and Computation. In: Preprint IFAC-Symposium on Nonlinear Control Systems (NOLCOS), Seiten 965–970, Stuttgart, September 2004.Google Scholar
  77. [Röb04b]
    Röbenack, K.: Computation of the Observer Gain for Extended Luenberger Observers Using Automatic Differentiation. IMA Journal of Mathematical Control and Information, 21(1):33–47, 2004.MathSciNetzbMATHGoogle Scholar
  78. [Röb04c]
    Röbenack, K.: Entwurfsmethodik für einen approximativen Normalform-Beobachter. Proc. in Applied Mathematics and Mechanics, 4:137–138, 2004.Google Scholar
  79. [Röb05a]
    Röbenack, K.: Approximate Observer Error Linearization for Multi-Output Systems. In: Preprints IFAC World Congress, Prague, Czech Republic, Juli 2005.Google Scholar
  80. [Röb05b]
    Röbenack, K.: Regler- und Beobachterentwurf für nichtlineare Systeme mit Hilfe des Automatischen Differenzierens. Shaker Verlag, Aachen, 2005.zbMATHGoogle Scholar
  81. [Röb06]
    Röbenack, K.: Extended Luenberger Observer for Nonuniformly Observable Nonlinear Systems. In: Meurer, Th. et al. [MGG05], Seiten 19–34.Google Scholar
  82. [Röb07a]
    Röbenack, K.: Direct Approximation of Observer Error Linearization for Nonlinear Forced Systems. IMA Journal of Mathematical Control and Information, 24(4):551–566, 2007.MathSciNetzbMATHGoogle Scholar
  83. [Röb07b]
    Röbenack, K.: Observer Design for a Class of Nonlinear Systems with Non-Full Relative Degree. Nonlinear Dynamics and Systems Theory, 7(4):399–408, 2007.MathSciNetzbMATHGoogle Scholar
  84. [Röb10]
    Röbenack, K.: Entwurf nichtlinear Beobachter mit linearer und näherungsweise linearer Fehlerdynamik. Automatisierungstechnik, 58(9):489–497, 2010.Google Scholar
  85. [Röb12]
    Röbenack, K.: Structure Matters – Some Notes on High Gain Observer Design for Nonlinear Systems. In: Proc. International Multi-Conference on Systems, Signals and Devices (SSD), Chemnitz, März 2012.Google Scholar
  86. [Röb13]
    Röbenack, K.: A Flow-Based Approximation of Observer Error Linearization for Non-Linear Systems. WSEAS Transactions on Systems and Control, 8(1):11–20, 2013.Google Scholar
  87. [Rös76]
    Rössler, O. E.: An Equation for Continuous Chaos. Phys. Lett., 57A:397, 1976.zbMATHGoogle Scholar
  88. [Rös79]
    Rössler, O. E.: Continuous chaos – four prototyp equations. In: Gruel, O. und O. E. Rössler (Herausgeber): Bifurcation Theory and Applications in Scientific Disciplines, Band 316 der Reihe Ann. N.Y. Acad. Sci., Seiten 376–392, 1979.Google Scholar
  89. [RPN04]
    Respondek, W., A. Pogromsky und H. Nijmeijer: Time scaling for observer design with linearizable error dynamics. Automatica, 40(2):277–285, Februar 2004.MathSciNetzbMATHGoogle Scholar
  90. [RRZ97]
    Rothfuß, R., J. Rudolph und M. Zeitz: Flachheit: Ein neuer Zugang zur Steuerung und Regelung nichtlinearer Systeme. Automatisierungstechnik, 45:517–525, 1997.Google Scholar
  91. [Rud03]
    Rudolph, J.: Beiträge zur flachheitsbasierten Folgeregelung linearer und nichtlinearer Systeme endlicher und unendlicher Dimension. Berichte aus der Steuerungs- und Regelungstechnik. Shaker Verlag, Aachen, 2003.Google Scholar
  92. [RZ94]
    Rudolph, J. und M. Zeitz: A block triangluar nonlinear observer normal form. Systems & Control Letters, 23:1–8, 1994.MathSciNetzbMATHGoogle Scholar
  93. [RZ95]
    Rothfuss, R. und M. Zeitz: Einführung in die Analyse nichtlinearer Systeme. In: Engell, S. (Herausgeber): Entwurf nichtlinearer Regelungen, Seiten 3–22. Oldenbourg-Verlag, München, 1995.Google Scholar
  94. [Sch97]
    Schaffner, J.: Zum Beobachterentwurf für nichtlineare Systeme mit mehreren Meßgrößen, Band 620 der Reihe VDI-Forschrittsberichte, Reihe 8: Meß-, Steuerungs- und Regelungstechnik. VDI-Verlag, Düsseldorf, 1997.Google Scholar
  95. [Sch98]
    Schaffner, J.: Dezentraler Entwurf nichtlinearer Beobachter. Automatisierungstechnik, 1:32–39, 1998.Google Scholar
  96. [SZ97]
    Schaffner, J. und M. Zeitz: Decentralized block triangular observer design for nonlinear systems. In: Proc. European Control Conference (ECC), Brussels, Juli 1997.Google Scholar
  97. [SZ99a]
    Schaffner, J. und M. Zeitz: Decentral nonlinear observer design using a block-triangular form. Int. J. Systems Science, 30(10):1131–1142, Oktober 1999.zbMATHGoogle Scholar
  98. [SZ99b]
    Schaffner, J. und M. Zeitz: Variants of Nonlinear Normal Form Observer Design. In: Hijmeijer, H. und T. I. Fossen [NF99], Seiten 161–180.Google Scholar
  99. [Tha73]
    Thau, F. E.: Observing the state of nonlinear dynamical systems. Int. J. Control, 17(3):471–479, 1973.zbMATHGoogle Scholar
  100. [vdP26]
    Pol, B. van der: On “relaxation-oscillation”. Philosophical Magazine Series 7, 2(2):978–992, 1926.Google Scholar
  101. [WL06]
    Wang, Y. und A. F. Lynch: A Block Triagonal Form for Nonlinear Observer Design. IEEE Trans. on Automatic Control, 51(11):1803–1808, November 2006.MathSciNetzbMATHGoogle Scholar
  102. [WL10]
    Wang, Y. und A.F. Lynch: Time scaling of multi-output observer form. IEEE Trans. on Automatic Control, 55(4):966–971, 2010.MathSciNetzbMATHGoogle Scholar
  103. [WLRR04]
    Winkler, J., S. O. Lindert, K. Röbenack und J. Rudolph: Design of a nonlinear observer using automatic differentiation. Proc. in Applied Mathematics and Mechanics, 4:147–148, 2004.zbMATHGoogle Scholar
  104. [WR12]
    Winkler, J. und K. Röbenack: Observer based determination of the crystal diameter in Czochralski crystal growth utilizing algorithmic differentiation. In: Proc. International Multi-Conference on Systems, Signals and Devices (SSD), Chemnitz, März 2012.Google Scholar
  105. [XG88]
    Xia, X. H. und W. B. Gao: Non-linear observer design by observer canonical form. Int. J. Control, 47(4):1081–1100, 1988.zbMATHGoogle Scholar
  106. [XG89]
    Xia, X. H. und W. B. Gao: Nonlinear observer design by observer error linearization. SIAM J. Control and Optimization, 27(1):199–216, Januar 1989.MathSciNetzbMATHGoogle Scholar
  107. [Xia06]
    Xiao, M.: The global existence of nonlinear observers with linear error dynamics: A topological point of view. Systems & Control Letters, 55:849–858, 2006.MathSciNetzbMATHGoogle Scholar
  108. [XZ97]
    Xia, X. H. und M. Zeitz: On nonlinear continuous observers. Int. J. Control, 66:943–954, 1997.MathSciNetzbMATHGoogle Scholar
  109. [Zei85]
    Zeitz, M.: Canonical forms for nonlinear systems. In: Jakubczyk, B. et al. [JRT85], Seiten 255–278.Google Scholar
  110. [Zei87a]
    Zeitz, M.: Comments on ‘Comparative study of non-linear state-observation techniques. Int. J. Control, 46(5):1861–1863, 1987.MathSciNetzbMATHGoogle Scholar
  111. [Zei87b]
    Zeitz, M.: The extended Luenberger observer for nonlinear systems. Systems & Control Letters, 9:149–156, 1987.MathSciNetzbMATHGoogle Scholar
  112. [Zei89]
    Zeitz, M.: Canonical forms for nonlinear systems. In: Proc. IFAC-Symposium Nonlinear Control System Design, Capri, Italy, 1989.Google Scholar
  113. [Zei98]
    Zeitz, M.: Nichtlineare stetige Beobachter. Z. Angew. Math. Mech., 78:1137–1140, 1998.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Klaus Röbenack
    • 1
  1. 1.TU DresdenDresdenDeutschland

Personalised recommendations