Advertisement

Reglerentwurf mittels exakter Linearisierung

  • Klaus Röbenack
Chapter

Zusammenfassung

Dieses Kapitel legt die Grundlagen für den Reglerentwurf mittels exakter Linearisierung. Behandelt werden zunächst der relative Grad und die damit in Verbindung stehenden Normalformen nichtlinearer Systeme. Auf Basis dieserNormalformen lässt sich die jeweilige Systemdynamik durch eine Rückführung teilweise oder in bestimmten Fällen sogar vollständig linearisieren. Das sich daraus ergebende lineare System ist mit einer linearen Rückführung zu stabilisieren. Dieser Ansatz wird zunächst für eine spezielle Form von Eingrößensystemen behandelt und anschließend auf allgemeine nichtlineare Systeme und Mehrgrößensysteme übertragen. Zusätzlich wird die Verbindung zu flachen Systemen hergestellt.

Literatur

  1. [Agu02]
    Aguilar, C: Approximate feedback linearization and sliding mode control for the single inverted pendulum. Technischer Bericht, Queen’s University, Mathematics and Engineering, August 2002.Google Scholar
  2. [AP90]
    Arrowsmith, D. K. und C. M. Place: An Introduction to Dynamical Systems. Cambridge University Press, Cambridge, 1990.zbMATHGoogle Scholar
  3. [Beu01]
    Beutelspacher, A.: Lineare Algebra. Vieweg, Braunschweig, Wiesbaden, 5. Auflage, 2001.zbMATHGoogle Scholar
  4. [BI88]
    Byrnes, C. I. und A. Isidori: Local stabilization of minimum phase systems. Systems & Control Letters, 11:9–17, 1988.MathSciNetzbMATHGoogle Scholar
  5. [BI91]
    Byrnes, C. I. und A. Isidori: Asymptotic stabilization of minimum phase nonlinear systems. IEEE Trans. on Automatic Control, 36(10):1122–1137, 1991.MathSciNetzbMATHGoogle Scholar
  6. [BIW91]
    Byrnes, C. I., A. Isidori und J. C. Willems: Passivity, feedback equivalence, and global stabilization of minimum phase systems. IEEE Trans. on Automatic Control, 36(11):1228–1240, 1991.MathSciNetzbMATHGoogle Scholar
  7. [BMB14]
    Bacha, S., I. Munteanu und A. I. Bratcu: Power Electronic Converters Modeling and Control. Springer-Verlag, London, 2014.Google Scholar
  8. [Boo84]
    Boothby, W. M.: Some comments on global linearization of nonlinear systems. Systems & Control Letters, 4:143–147, 1984.MathSciNetzbMATHGoogle Scholar
  9. [Bru70]
    Brunovský, P.: A classification of linear controllable systems. Kybernetica, 6(3):173–188, 1970.MathSciNetzbMATHGoogle Scholar
  10. [BZ83]
    Bestle, D. und M. Zeitz: Canonical form observer design for non-linear time-variable systems. Int. J. Control, 38(2):419–431, 1983.zbMATHGoogle Scholar
  11. [CMP07]
    Conte, G., C. H. Moog und A. M. Perdon: Algebraic Methods for Nonlinear Control Systems. Springer-Verlag, London, 2. Auflage, 2007.zbMATHGoogle Scholar
  12. [CP96]
    Chen, D. und D. Paden: Stable inversion of nonlinear non-minimum phase systems. Int. J. Control, 64(1):81–97, 1996.MathSciNetzbMATHGoogle Scholar
  13. [ČZM08]
    Čelikovský, S., J. Zikmund und C. Moog: Partial exact linearization design for the Acrobot walking. In: Proc. American Control Conference (ACC), Seiten 874–879, Juni 2008.Google Scholar
  14. [DBE85]
    Dayawansa, W., W. M. Boothby und D. L. Elliott: Global state and feedback equivalence of nonlinear systems. Systems & Control Letters, 6:229–234, 1985.MathSciNetzbMATHGoogle Scholar
  15. [DCP96]
    Devasia, S., D. Chen und B. Paden: Nonlinear inversion-based output tracking. IEEE Trans. on Automatic Control, 41(7):930–942, Jul 1996.MathSciNetzbMATHGoogle Scholar
  16. [DFIL89]
    Descusse, J., M. Fliess, A. Isidori und D. Leborgne (Herausgeber): New Trends in Nonlinear Control Theory, Proceedings of an International Conference on Nonlinear Systems, Nantes, France, June 13–17, 1988. Springer-Verlag, 1989.Google Scholar
  17. [dJ91]
    Jager, B.de : Symbolic calculation of zero dynamics for nonlinear control systems. In:Proc. Int. Symposium on Symbolic and Algebraic Computation, Seiten 321 – 322, 1991.Google Scholar
  18. [dJ95]
    Jager, B. de: The use of symbolic computation in nonlinear control: Is it viable? IEEE Trans.on Automatic Control, 40(1):84–89, 1995MathSciNetzbMATHGoogle Scholar
  19. [DK91]
    Daoutidis, P. und C. Kravaris: Inversion and Zero Dynamics in Nonlinear Multivariable Control. AIChE Journal, 37(4):527–538, April 1991.MathSciNetGoogle Scholar
  20. [DR98a]
    Delaleau, E. und W. Respondek: Lowering the orders of derivatives of controls in ge- neralized state space systems. Journal of Mathematical Systems Estimation and Control, 8(4):427–454, 1998.MathSciNetGoogle Scholar
  21. [DR98b]
    Delaleau, E. und J. Rudolph: Control of flat systems by quasi-static feedback of generali- zed states. Int. J. Control, 71(5):745–765, 1998.zbMATHGoogle Scholar
  22. [EOS+99]
    Escobar, G., R. Ortega, H. Sira-Ramirez, J. P. Vilan und I. Zein: An experimental comparison of several non linear controllers for power converters. IEEE Control Systems, 19(1):66–82, 1999.Google Scholar
  23. [FFKR16]
    Fritzsche, K., M. Franke, C. Knoll und K. Röbenack: Über die systematische Bestimmung fla- cher Ausgänge nichtlinearer Mehrgrößensysteme. Automatisierungstechnik, 64 (12):948–960, Dezember 2016.Google Scholar
  24. [Fli90]
    Fliess, M.: Generalized controller canonical form for linear and nonlinear dynamics. IEEE Trans. on Automatic Control, 35(9):994–1001, 1990.MathSciNetzbMATHGoogle Scholar
  25. [FLMR95]
    Fliess, M., J. Lévine, P. Martin und P. Rouchon: Flatness and defect of non-linear systems: Introductory Theory and Examples. Int. J. Control, 61:1327–1361, 1995.MathSciNetzbMATHGoogle Scholar
  26. [FLMR99]
    Fliess, M., J. Lévine, P. Martin und P. Rouchon: Some open questions related to flat nonlinear systems. In: Blondel, V. D., E. D. Sontag, M. Vidyasagar und J. C. Willems (Herausgeber): Open Problems in Mathematical Systems and Control Theory, Kapitel 21, Seiten 99–103. Springer, London, 1999.Google Scholar
  27. [FR12]
    Franke, M. und K. Röbenack: Some remarks concerning differential flatness and tangent 4 systems. Proc. in Applied Mathematics and Mechanics, 12(1):729–730, 2012.Google Scholar
  28. [Fra14]
    Franke, M.: Über die Konstruktion flacher Ausgänge für nichtlineare Systeme und zurPolzuweisung durch statische Ausgangsrückführungen. Logos Verlag, Berlin, 2014.Google Scholar
  29. [Gan86]
    Gantmacher, F. R.: Matrizentheorie. Springer-Verlag, Berlin, 1986.Google Scholar
  30. [GdR05]
    Gruenbacher, E. und L. del Re: Output Tracking of Non Input Affine Systems using Extended Hammerstein Models. In: Proc. American Control Conference (ACC), Seiten 4874–4879, Portland, Juni 2005.Google Scholar
  31. [GH83]
    Guckenheimer, J. und P. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurca- tions of Vector Fields. Springer-Verlag, New York, 1983.zbMATHGoogle Scholar
  32. [Gla89]
    Glad, S. T.: Nonlinear state space and input output descriptions using differential poly- nomials. In: Descusse, J. et al. [DFIL89], Seiten 182—189.Google Scholar
  33. [Góm94]
    Gómez, J. C.: Using Symbolic Computation for the Computer Aided Design of Nonlinear (Adaptive) Control Systems. In: IMACS World Congress on Computational and Applied Mathemathics, Atlanta, Juli 1994.Google Scholar
  34. [GWRG06]
    Gensior, A., O. Woywode, J. Rudolph und H. Güldner: On Differential Flatness, Trajectory Planning, Observers, and Stabilization for DC-DC Converts. IEEE Trans. on Circuits and Systems I, 53(9):2000–2010, September 2006.MathSciNetzbMATHGoogle Scholar
  35. [Haa14]
    Haager, W.: Computeralgebra mit Maxima: Grundlagen der Anwendung und Program-mierung. Fachbuchverlag Leipzig im Carl Hanser Verlag, München, 2014.zbMATHGoogle Scholar
  36. [Hir79]
    Hirschorn, R. M.: Invertibility of Nonlinear Control Systems. SIAM J. on Control and Optimization, 17(2):289–297, 1979.MathSciNetzbMATHGoogle Scholar
  37. [HM90]
    Hauser, J. und R. M. Murray: Nonlinear controllers for Non-Integrable systems: the Acrobot example. In: Proc. American Control Conference (ACC), Seiten 669–671, 1990.Google Scholar
  38. [HS90]
    Henson, M. A. und D. E. Seborg: Input-Output Linearization of General Nonlinear Processes. AIChE Journal, 36(11):1753–1757, 1990.Google Scholar
  39. [HS97]
    Henson, M. A. und D. E. Seborg: Nonlinear Process Control, Kapitel 3, Seiten 111–147.Prentice-Hall, Englewood Cliffs, New Jesey, 1997.Google Scholar
  40. [HSK92]
    Hauser, J., S. Sastry und P. Kokotovic: Nonlinear Control Via Approximate Input-Output-Linearization: The Ball and Beam Example. IEEE Trans. on Automatic Control, 37 (3):392–398, 1992.MathSciNetGoogle Scholar
  41. [HSM83]
    Hunt, L. R., R. Su und G. Meyer: Global Transformation of Nonlinear Systems. IEEE Trans. on Automatic Control, 28(1):24–30, Januar 1983.MathSciNetzbMATHGoogle Scholar
  42. [HZ04]
    Hagenmeyer, V. und M. Zeitz: Internal dynamics of flat nonlinear SISO systems with respect to a non-flat output. Systems & Control Letters, 52:323–327, 2004.MathSciNetzbMATHGoogle Scholar
  43. [Ise92]
    Isermann, R.: Identifikation dynamischer Systeme 2. Springer, Berlin, Heidelberg, 2. Auflage, 1992.zbMATHGoogle Scholar
  44. [Isi95]
    Isidori, A.: Nonlinear Control Systems: An Introduction. Springer-Verlag, London, 3, 1995.zbMATHGoogle Scholar
  45. [Isi13]
    Isidori, A.: The zero dynamics of a nonlinear system: From the origin to the latest progresses of a long successful story. European Journal of Control, Seiten 369–378, 2013MathSciNetzbMATHGoogle Scholar
  46. [Joh71]
    John, F.: Partial Differential Equations. Springer-Verlag, New York, 1971.zbMATHGoogle Scholar
  47. [Kal62]
    Kalman, R. E.: Canonical structure of linear dynamical systems. Proceedings of the National Academy of Sciences, 48(4):596–600, 1962.MathSciNetzbMATHGoogle Scholar
  48. [KB00]
    Kwatny, H. G. und G. L. Blankenship: Nonlinear Control and Analytical Mechanics: A Computational Approach. Birkhäuser, Boston, 2000.zbMATHGoogle Scholar
  49. [Kno16]
    Knoll, C.: Regelungstheoretische Analyse- und Entwurfsansätze für unteraktuierte mechanische Systeme. epubli, Berlin, 2016.Google Scholar
  50. [KR15]
    Knoll, C. und K. Röbenack: Maneuver-based control of the 2-degrees of freedom underactuated manipulator in normal form coordinates. Systems Science & Control Engineering, 3(1):26–38, 2015.Google Scholar
  51. [KSW99]
    Krichman, M., E. D. Sontag und Y. Wang: Lyapunov characterisations of input-output-to-state stability. In: Proc. IEEE Conf. on Decision and Control (CDC), Band 3, Seiten 2070–2075, Dezember 1999.Google Scholar
  52. [KvW07]
    Kerner, H. und W. von Wahl: Mathematik für Physiker. Springer-Verlag, Berlin, Heidelberg, 2. Auflage, 2007zbMATHGoogle Scholar
  53. [Lév07]
    Lévine, J.: On the equivalence between differential flatness and dynamic feedback linearizability. IFAC Proceedings Volumes, 40(20):338–343, 2007.Google Scholar
  54. [Lév11]
    Lévine, J.: On necessary and sufficient conditions for differential flatness. Applicable Algebra in Engineering, Communication and Computing, 22(1):47–90, 2011.MathSciNetzbMATHGoogle Scholar
  55. [LL01]
    Leith, D. J. und W. E. Leithead: Input-output linearisation of nonlinear systems with ill-defined relative degree: the ball and beam revisited. In: Proc. American Control Conference (ACC), Band 4, Seiten 2811–2816, 2001.Google Scholar
  56. [LLC88]
    Lamnabhi-Lagarrigue, F. und P. Crouch: A formula for iterated derivatives along trajectories of nonlinear systems. Systems & Control Letters, 11:1–7, 1988.MathSciNetzbMATHGoogle Scholar
  57. [LLP96]
    Léevine, J., J. Lottin und J. C. Ponsart: A Nonlinear Approach to the Control of Magnetic Bearings. IEEE Trans. on Control Systems Technology, 4(5):524–544, September 1996.Google Scholar
  58. [LMG10]
    Liu, J., W. Ming und F. Gao: A New Control Strategy for Improving Performance of Boost DC/DC Converter Based on Input-Output Feedback Linearization. In: Proc. of the 8th World Congress on Intelligent Control and Automation, Jinan, China, Juli 2010.Google Scholar
  59. [LMS00]
    Liberzon, D., A. S. Morsel und E. D. Sontag: A new definition of the minimum-phase property for nonlinear systems, with an application to adaptive control. In: Proc. IEEE Conf. on Decision and Control (CDC), Sydney, Australia, Dezember 2000.Google Scholar
  60. [Lun97]
    Lunze, J.: Regelungstechnik 2, Mehrgrößensysteme, Digitale Regelung. Springer-Verlag, Berlin, Heidelberg, 4. Auflage, 1997.zbMATHGoogle Scholar
  61. [MMAL11]
    Maalouf, D., C. Moog, Y. Aoustin und S. Li: Maximum Feedback Linearization with Internal Stability of 2-DOF Underactuated Mechanical Systems. In: Preprints of the 18th IFAC World Congress, Band 44, Seiten 8132–8137, Milano (Italy), 2011.Google Scholar
  62. [Nol04a]
    Nolting, W.: Grundkurs Theoretische Physik 1, Klassische Mechanik. Springer-Verlag, Berlin, 7. Auflage, 2004.zbMATHGoogle Scholar
  63. [Nol04b]
    Nolting, W.: Grundkurs Theoretische Physik 2, Analytische Mechanik. Springer-Verlag, Berlin, 4. Auflage, 2004.Google Scholar
  64. [NvdS90]
    Nijmeijer, H. und A. J. van der Schaft: Nonlinear Dynamical Control systems. Springer-Verlag, New York, 1990.zbMATHGoogle Scholar
  65. [OLV02]
    Oriolo, G., A. De Luca und M. Vendittelli: WMR control via dynamic feedback linearization: Design, implementation and experimental validation. IEEE Trans. on Control Systems Technology, 10(6):835–852, November 2002.Google Scholar
  66. [OS01]
    Olfati-Saber, R.: Global stabilization of a flat underactuated system: the inertia wheel pendulum. In: Proc. IEEE Conf. on Decision and Control (CDC), Band 4, Seiten 3764–3765, 2001.Google Scholar
  67. [RA11]
    Ryu, J. C. und S. K. Agrawal: Differential flatness-based robust control of mobile robots in the presence of slip. Int. Journal of Robotcs Research, 30(4):463–475, 2011.Google Scholar
  68. [Rei88]
    Reinschke, K. J.: Multivariable Control - A Graph-theoretic Approach, Band 108 der Reihe Lecture Notes in Control and Information Science. Springer-Verlag, 1988.Google Scholar
  69. [Rei96]
    Reitmann, V.: Reguläre und chaotische Dynamik. Mathematik für Ingenieure und Naturwissenschaftler. Teubner, Stuttgart, Leipzig, 1996.zbMATHGoogle Scholar
  70. [Rei14]
    Reinschke, K.: Lineare Regelungs- und Steuerungstheorie. Springer-Verlag, Berlin, Heidelberg, 2. Auflage, 2014.Google Scholar
  71. [Res86]
    Respondek, W.: Global aspects of linearization, equivalence to polynomial forms and decomposition ofnonlinear control systems. In: Fliess, M. und M. Hazewinkel (Herausgeber): Algebraic and Geometric Methods in Nonlinear Control, Seiten 257–284. Reidel, Dordrecht, 1986.Google Scholar
  72. [Röb05]
    Röbenack, K.: Automatic Differentiation and Nonlinear Controller Design by Exact Linearization. Future Generation Computer Systems, 21(8):1372–1379, 2005.Google Scholar
  73. [Röb07]
    Röbenack, K.: Controller design for nonlinear multi-input – multi-output systems based on an algorithmic plant description. Mathematical and Computer Modelling of Dynamical Systems, 13(2):193–209, 2007.MathSciNetzbMATHGoogle Scholar
  74. [RR00]
    Röbenack, K. und K. J. Reinschke: Reglerentwurf mit Hilfe des Automatischen Differenzierens. Automatisierungstechnik, 48(2):60–66, Februar 2000.Google Scholar
  75. [RRZ97]
    Rothfuß, R., J. Rudolph und M. Zeitz: Flachheit: Ein neuer Zugang zur Steuerung und Regelung nichtlinearer Systeme. Automatisierungstechnik, 45:517–525, 1997.Google Scholar
  76. [Rud03]
    Rudolph, J.: Beiträge zur flachheitsbasierten Folgeregelung linearer und nichtlinearer Systeme endlicher und unendlicher Dimension. Berichte aus der Steuerungs- und Regelungstechnik. Shaker Verlag, Aachen, 2003.Google Scholar
  77. [Rud05]
    Rudolph, J.: Rekursiver Entwurf stabiler Regelkreise durch sukzessive Berücksichtigung von Integratoren und quasi-statische Rückführungen. Automatisierungstechnik, 53(8):389–399, 2005.Google Scholar
  78. [SCL01]
    Spong, M. W., P. Corke und R. Lozano: Nonlinear control of the Reaction Wheel Pendulum. Automatica, 37(11):1845– 1851, 2001.zbMATHGoogle Scholar
  79. [SJK97]
    Sepulchre, R., M. Janković und P. Kokotović: Constructive Nonlinear Control. Springer, London, 1997.zbMATHGoogle Scholar
  80. [Son95]
    Sontag, E. D.: On the Input-to-State Stability Property. European Journal of Control, 1(1):24–36, 1995.MathSciNetzbMATHGoogle Scholar
  81. [Son00]
    Sontag, E. D.: The ISS philosophy as a unifying framework for stability-like behavior. In: Isidori, A., F. Lamnabhi-Lagarrigue und W. Respondek (Herausgeber): Nonlinear Control in the Year 2000 (Volume 2), Band 259 der Reihe Lecture Notes in Control and Information Science, Seiten 443–468. Springer, Berlin, 2000.Google Scholar
  82. [Spo94]
    Spong, M. W.: Partial feedback linearization ofunderactuated mechanical systems. In: Proc. of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems (IROS ’94), Band 1, Seiten 314–321, September 1994.Google Scholar
  83. [Spo95]
    Spong, M. W.: The swing up control problem for the Acrobot. IEEE Control Systems, 15(1):49–55, Februar 1995.Google Scholar
  84. [Spo96]
    Spong, M. W.: Energy based control of a class of underactuated mechanical systems. In: Proc. 13th IFAC World Congress, volume F, Seiten 431–436, San Francisco, California, Juli 1996.Google Scholar
  85. [Spo98]
    Spong, M. W.: Underactuated Mechanical Systems. In: Siciliano, B. und K. P. Valavanis (Herausgeber): Control Problems in Robotics, Band 230 der Reihe Lecture Notes in Control and Information Science, Seiten 135–150. Springer-Verlag, London, 1998.Google Scholar
  86. [SR02]
    Sira-Ramirez, H.: Sliding Modes, Passivity, and Flatness. In: Perruquetti, W. und J. P. Barbot (Herausgeber): Sliding Mode Control In Engineering. CRC Press, 2002.Google Scholar
  87. [SS12]
    Schöberl, M. und K. Schlacher: Zur konstruktiven Berechnung flacher Ausgänge für nichtlineare Systeme. Automatisierungstechnik, 60(8):452–461, 2012.Google Scholar
  88. [Su82]
    Su, R.: On the linear equivalents of nonlinear systems. Systems & Control Letters, 2(1):48–52, 1982.MathSciNetzbMATHGoogle Scholar
  89. [Sus90]
    Sussmann, H. J.: Limitations on the stabilizability of globally-minimum-phase systems. IEEE Trans on Automatic Control, 35(1):117–119, Januar 1990.MathSciNetzbMATHGoogle Scholar
  90. [Sva06]
    Svaricek, F.: Nulldynamik linearer und nichtlinearer Systeme: Definition, Eigenschaft und Anwendungen. Automatisierungstechnik, 54(7), 2006.Google Scholar
  91. [SXW08]
    Shuai, D., Y. Xie und X. Wang: The research of input-output linearization and stabilization analysis of internal dynamics on the CCM Boost converter. In: Int. Conference on Electrical Machines and Systems (ICEMS 2008), Seiten 1860–1864, Oktober 2008.Google Scholar
  92. [TK83]
    Tsinias, J. und N. Kalouptsidis: Invertibility of nonlinear analytic single-input systems. IEEE Trans. on Automatic Control, 28(9):931–933, 1983.MathSciNetzbMATHGoogle Scholar
  93. [VA13]
    Verhoeven, G. und F. Antritter: Ein Werkzeug zur automatisierten Flachheitsanalyse nichtlinearer Systeme. Automatisierungstechnik, 61(1):60–71, Januar 2013.Google Scholar
  94. [vdS84]
    Schaft, A. J. van der: Linearization and input-output decoupling for general nonlinear systems. Systems & Control Letters, 5:27–33, 1984.MathSciNetzbMATHGoogle Scholar
  95. [vLR03]
    Löwis, J. von und J. Rudolph: Real-trajectory generation for flat systems with constraints. In: Zinober, A. und D. Owens (Herausgeber): Nonlinear and Adaptive Control, Band 281 der Reihe Lecture Notes in Control and Information Science, Seiten 371–380. Springer, 2003.Google Scholar
  96. [vNRM94]
    Nieuwstadt, M. van, M. Rathinam und R. M. Murray: Differential flatness and absolute equivalence. In: Proc. IEEE Conf. on Decision and Control (CDC), Band 1, Seiten 326–332, Dezember 1994.Google Scholar
  97. [WD72]
    Wu, F. F. und C. A. Desoer: Global inverse function theorem. IEEE Trans. on Circuit Theory, 19:199–201, 1972.MathSciNetGoogle Scholar
  98. [Zei85]
    Zeitz, M.: Canonical forms for nonlinear systems. In: Jakubczyk, B., W. Respondek und K. Tchoń (Herausgeber): Geometric Theory of Nonlinear Control Systems, Seiten 255–278. Wroclaw Technical University Press, 1985.Google Scholar
  99. [Zei89]
    Zeitz, M.: Canonical forms for nonlinear systems. In: Proc. IFAC-Symposium Nonlinear Control System Design, Capri, Italy, 1989.Google Scholar
  100. [Zei14]
    Zeitz, M.: Minimalphasigkeit – keine relevante Eigenschaft für die Regelungstechnik! Automatisierungstechnik, 62(1):3–10, 2014.Google Scholar
  101. [ZFR06]
    Zhang, F. und B. Fernandez-Rodriguez: Feedback linearization control of systems with singularities: a ball-beam revisit. In: Proc. Int. Conf. on Complex Systems, 2006.Google Scholar
  102. [ŻM86]
    Żak, S. H. und C. A. MacCarley: State-feedback control of non-linear systems. Int. J. Control, 43(5):1497–1514, 1986.zbMATHGoogle Scholar
  103. [ZM06]
    Zikmund, J. und C. H. Moog: The structure of 2-bodies mechanical systems. In: Proc. IEEE Conf. on Decision and Control (CDC), Seiten 6454–6459, Dezember 2006.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Klaus Röbenack
    • 1
  1. 1.TU DresdenDresdenDeutschland

Personalised recommendations