Advertisement

International Conference on Theory and Application of Diagrams

Diagrams 2014: Diagrammatic Representation and Inference pp 176-189 | Cite as

Exploring the Effects of Colouring Graph Diagrams on People of Various Backgrounds

  • Beryl Plimmer
  • Ann Morrison
  • Hendrik Knoche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8578)

Abstract

Colour is one of the primary aesthetic elements of a visualization. It is often used successfully to encode information such as the importance of a particular part of the diagram or the relationship between two parts. Even so, there are few investigations into the human reading of colour coding on diagrams from the scientific community. In this paper we report on an experiment with graph diagrams comparing a black and white composition with two other colour treatments. We drew our subjects from engineering, art, visual design, physical education, tourism, psychology and social science disciplines. We found that colouring the nodes of interest reduced the time taken to find the shortest path between the two nodes for all subjects. Engineers, tourism and social scientists proved significantly faster with artist/designers just below the overall average speed. From this study, we contribute that adding particular colour treatments to diagrams increases legibility. In addition, preliminary work investigating colour treatments and schemes indicates potential for future gains.

Keywords

Colour encoding of diagrams Graph diagram aesthetics Subjects Disciplines’ Effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lindgaard, G., Fernandes, G., Dudek, C., Brown, J.: Attention Web Designers: You Have 50 Milliseconds to Make a Good First Impression! Behaviour & Information Technology 25(2), 115–126 (2006)CrossRefGoogle Scholar
  2. 2.
    Hartmann, J., Sutcliffe, A., Angeli, A.D.: Towards a Theory of User Judgment of Aesthetics and User Interface Quality. ACM Transactions on Computer-Human Interaction 15(4) (2008)CrossRefGoogle Scholar
  3. 3.
    Robins, D., Holmes, J.: Aesthetics and credibility in web site design. Information Processing & Management 44, 386–399 (2008)CrossRefGoogle Scholar
  4. 4.
    Alsudani, F., Casey, M.: The effect of aesthetics on web credibility. In: BCS People and Computers, pp. 512–519 (2009)Google Scholar
  5. 5.
    Lindgaard, G., Dudek, C., Sen, D., Sumegi, L., Noonan, P.: An Exploration of Relations Between Visual Appeal, Trustworthiness and Perceived Usability of Homepages. ACM Transactions on Computer-Human Interaction 18(1) (2011)CrossRefGoogle Scholar
  6. 6.
    Ware, C., Purchase, H., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Information Visualization 1(2), 103–110 (2002)CrossRefGoogle Scholar
  7. 7.
    Köhler, W.: Gestalt Psychology. Liveright, New York (1929)Google Scholar
  8. 8.
    Köhler, W.: Zum Problem der Regulation (On the problem of regulation). In: Henle, M. (ed.) The Selected Papers of Wolfgang Köhler, pp. 305–326. Liveright, New York (1927)Google Scholar
  9. 9.
    Tufte, E.R.: Envisioning Information, 2nd edn. Graphics Press USA (1990)Google Scholar
  10. 10.
    Hatfield, G., Epstein, W.: The status of minimum principle in the theoretical analysis of visual perception. Psychological Bulletin 97(20), 155–186 (1985)CrossRefGoogle Scholar
  11. 11.
    Pomerantz, J.R.: Colour as a Gestalt: Pop out with basic features and with conjunctions. Visual Cognition 14(4-8), 619–628 (2006)CrossRefGoogle Scholar
  12. 12.
    Albers, J.: Interaction of Color: 50th Anniversary Edition. Yale University Press (2013)Google Scholar
  13. 13.
    Purchase, H.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Purchase, H.C., Samra, A.: Extremes Are Better: Investigating Mental Map Preservation in Dynamic Graphs. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 60–73. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Schneider, E., Boucheix, J.-M.: On Line Elaboration of a Mental Model During the Understanding of an Animation. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrams 2006. LNCS (LNAI), vol. 4045, pp. 40–54. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Wybrow, M., Marriott, K., Stuckey, P.J.: Orthogonal Hyperedge Routing. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrams 2012. LNCS (LNAI), vol. 7352, pp. 51–64. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Silva, S., Sousa Santos, B., Madeira, J.: Using color in visualization: A survey. Computers & Graphics 35(2), 320–333 (2011)CrossRefGoogle Scholar
  18. 18.
    Della Ventura, A., Schettini, R.: Computer aided color coding. In: Communicating with Virtual Worlds, pp. 62–75. Springer Japan (1993)Google Scholar
  19. 19.
    Dillencourt, M.B., Eppstein, D., Goodrich, M.T.: Choosing colors for geometric graphs via color space embeddings. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 294–305. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Ware, C.: Information visualization: perception for design. Elsevier (2012)Google Scholar
  21. 21.
    Kosara, R., Healey, C.G., Interrante, V., Laidlaw, D.H., Ware, C.: Visualization viewpoints. IEEE Computer Graphics and Applications 23(4), 20–25 (2003)CrossRefGoogle Scholar
  22. 22.
    Ware, C.: Color sequences for univariate maps: Theory, experiments and principles. IEEE Computer Graphics and Applications 8(5), 41–49 (1988)CrossRefGoogle Scholar
  23. 23.
    Tsonos, D., Kouroupetroglou, G.: Modeling reader’s emotional state response on document’s typographic elements. Adv. in Hum.-Comp. Int. 2 (January 2011)Google Scholar
  24. 24.
    Morten, J.L.: Color Logic, Colorcom (2008)Google Scholar
  25. 25.
    Burns, K.: Bar-Gain Boxes: An Informative Illustration of the Pairing Problem. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams 2004. LNCS (LNAI), vol. 2980, pp. 379–381. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Lowe, R., Boucheix, J.-M.: Supporting Relational Processing in Complex Animated Diagrams. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 391–394. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Cheng, P.C.H., Barone, R.: Representing Rosters: Conceptual Integration Counteracts Visual Complexity. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams 2004. LNCS (LNAI), vol. 2980, pp. 385–387. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  28. 28.
    Burns, K.: Bayesian Boxes: A Colored Calculator for Picturing Posteriors. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams 2004. LNCS (LNAI), vol. 2980, pp. 382–384. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Purchase, H.C.: Sketched Graph Drawing: A Lesson in Empirical Studies. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 232–243. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Beryl Plimmer
    • 1
  • Ann Morrison
    • 2
  • Hendrik Knoche
    • 2
  1. 1.Dept Computer ScienceUniversity of AucklandNew Zealand
  2. 2.Department of Architecture, Design and Media TechnologyDenmark

Personalised recommendations