Advertisement

International Conference on Theory and Application of Diagrams

Diagrams 2014: Diagrammatic Representation and Inference pp 9-15 | Cite as

Counting Crossings for Layered Hypergraphs

  • Miro Spönemann
  • Christoph Daniel Schulze
  • Ulf Rüegg
  • Reinhard von Hanxleden
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8578)

Abstract

Orthogonally drawn hypergraphs have important applications, e. g. in actor-oriented data flow diagrams for modeling complex software systems. Graph drawing algorithms based on the approach by Sugiyama et al. place nodes into consecutive layers and try to minimize the number of edge crossings by finding suitable orderings of the nodes in each layer. With orthogonal hyperedges, however, the exact number of crossings is not determined until the edges are actually routed in a later phase of the algorithm, which makes it hard to evaluate the quality of a given node ordering beforehand. In this paper, we present and evaluate two cross counting algorithms that predict the number of crossings between orthogonally routed hyperedges much more accurately than the traditional straight-line method.

Keywords

edge crossings hypergraphs graph drawing layered graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man and Cybernetics 11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Eschbach, T., Guenther, W., Becker, B.: Orthogonal hypergraph drawing for improved visibility. Journal of Graph Algorithms and Applications 10(2), 141–157 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Sander, G.: Layout of directed hypergraphs with orthogonal hyperedges. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 381–386. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Barth, W., Mutzel, P., Jünger, M.: Simple and efficient bilayer cross counting. Journal of Graph Algorithms and Applications 8(2), 179–194 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Eschbach, T., Guenther, W., Becker, B.: Crossing reduction for orthogonal circuit visualization. In: Proceedings of the 2003 International Conference on VLSI, pp. 107–113. CSREA Press (2003)Google Scholar
  6. 6.
    Nagamochi, H., Yamada, N.: Counting edge crossings in a 2-layered drawing. Information Processing Letters 91(5), 221–225 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Waddle, V., Malhotra, A.: An E logE line crossing algorithm for levelled graphs. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 59–71. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S., Xiong, Y.: Taming heterogeneity—the Ptolemy approach. Proceedings of the IEEE 91(1), 127–144 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Miro Spönemann
    • 1
  • Christoph Daniel Schulze
    • 1
  • Ulf Rüegg
    • 1
  • Reinhard von Hanxleden
    • 1
  1. 1.Department of Computer ScienceChristian-Albrechts-Universität zu KielGermany

Personalised recommendations