Visualizing Sets: An Empirical Comparison of Diagram Types
Abstract
There are a range of diagram types that can be used to visualize sets. However, there is a significant lack of insight into which is the most effective visualization. To address this knowledge gap, this paper empirically evaluates four diagram types: Venn diagrams, Euler diagrams with shading, Euler diagrams without shading, and the less well-known linear diagrams. By collecting performance data (time to complete tasks and error rate), through crowdsourcing, we establish that linear diagrams outperform the other three diagram types in terms of both task completion time and number of errors. Venn diagrams perform worst from both perspectives. Thus, we provide evidence that linear diagrams are the most effective of these four diagram types for representing sets.
Keywords
set visualization linear diagrams Venn diagrams Euler diagramsPreview
Unable to display preview. Download preview PDF.
References
- 1.Larkin, J., Simon, H.: Why a diagram is (sometimes) worth ten thousand words. J. of Cognitive Science 11, 65–99 (1987)CrossRefGoogle Scholar
- 2.Rodgers, P., Zhang, L., Purchase, H.: Wellformedness properties in Euler diagrams: Which should be used? IEEE Trans. on Visualization and Computer Graphics 18(7), 1089–1100 (2012)CrossRefGoogle Scholar
- 3.Couturat, L.: Opuscules et fragments inédits de Leibniz. Felix Alcan (1903)Google Scholar
- 4.Wittenburg, K., Lanning, T., Heinrichs, M., Stanton, M.: Parallel Bargrams for Consumer-based Information Exploration and Choice. In: 14th ACM Symposium on User Interface Software and Technology, pp. 51–60 (1985, 2001)Google Scholar
- 5.Hofmann, H., Siebes, A., Wilhelm, A.: Visualizing Association Rules with Interactive Mosaic Plots. In: ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 227–235 (2000)Google Scholar
- 6.Moody, D.: The “Physics” of Notations: Toward a Scientific Basis for Constructing Visual Notations in Software Engineering. IEEE Trans. on Software Engineering 35(6), 756–779 (2009)CrossRefGoogle Scholar
- 7.Benoy, F., Rodgers, P.: Evaluating the comprehension of Euler diagrams. In: 11th Int. Conf. on Information Visualization, pp. 771–778. IEEE (2007)Google Scholar
- 8.Blake, A., Stapleton, G., Rodgers, P., Cheek, L., Howse, J.: Does the orientation of an Euler diagram affect user comprehension? In: 18th Int. Conf. on Distributed Multimedia Systems, pp. 185–190. Knowledge Systems Institute (2012)Google Scholar
- 9.Grawemeyer, B.: Evaluation of ERST – an external representation selection tutor. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrams 2006. LNCS (LNAI), vol. 4045, pp. 154–167. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 10.Sato, Y., Mineshima, K.: The Efficacy of Diagrams in Syllogistic Reasoning: A Case of Linear Diagrams. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrams 2012. LNCS, vol. 7352, pp. 352–355. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 11.Sato, Y., Mineshima, K., Takemura, R.: The Efficacy of Euler and Venn Diagrams in Deductive Reasoning: Empirical Findings. In: Goel, A.K., Jamnik, M., Narayanan, N.H. (eds.) Diagrams 2010. LNCS, vol. 6170, pp. 6–22. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 12.Isenberg, P., Bezerianos, A., Dragicevic, P., Fekete, J.: A study on dual-scale data charts. IEEE Tran. on Visualization and Computer Graphics, 2469–2478 (2011)CrossRefGoogle Scholar
- 13.Puchase, H.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar
- 14.Riche, N., Dwyer, T.: Untangling Euler diagrams. IEEE Tran. on Visualization and Computer Graphics 16(6), 1090–1099 (2010)CrossRefGoogle Scholar
- 15.Harrower, M., Brewer, C.: ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps. The Cartographic Journal 40(1), 27–37 (2003)CrossRefGoogle Scholar
- 16.Silva, S., Madeira, J., Santos, B.S.: There is more to color scales than meets the eye: A review on the use of color in visualization. In: Information Visualization, pp. 943–950. IEEE (2007)Google Scholar
- 17.Ihaka, R.: Colour for presentation graphics. In: 3rd Int. Workshop on Distributed Statistical Computing (2003)Google Scholar
- 18.Gurr, C.: Effective diagrammatic communication: Syntactic, semantic and pragmatic issues. J. of Visual Languages and Computing 10(4), 317–342 (1999)CrossRefGoogle Scholar
- 19.Stapleton, G., Rodgers, P., Howse, J., Taylor, J.: Properties of Euler diagrams. In: Proc. of Layout of Software Engineering Diagrams, pp. 2–16. EASST (2007)Google Scholar
- 20.Ruskey, F.: A survey of Venn diagrams. Electronic J. of Combinatorics (1997), http://www.combinatorics.org/Surveys/ds5/VennEJC.html
- 21.Chen, J., Menezes, N., Bradley, A., North, T.: Opportunities for crowdsourcing research on amazon mechanical turk. Human Factors 5(3) (2011)Google Scholar
- 22.Paolacci, G., Chandler, J., Ipeirotis, P.G.: Running experiments on amazon mechanical turk. Judgment and Decision Making 5(5), 411–419 (2010)Google Scholar
- 23.Heer, J., Bostock, M.: Crowdsourcing graphical perception: Using mechanical turk to assess visualization design. In: ACM Conf. on Human Factors in Computing Systems, pp. 203–212 (2010)Google Scholar
- 24.Micallef, L., Dragicevic, P., Fekete, J.D.: Assessing the Effect of Visualizations on Bayesian Reasoning through Crowdsourcing. IEEE Trans. on Visualization and Computer Graphics 18(12), 2536–2545 (2012)CrossRefGoogle Scholar
- 25.Oppenheimer, D., Meyvis, T., Davidenko, N.: Instructional manipulation checks: Detecting satisficing to increase statistical power. J. of Experimental Social Psychology 45(4), 867–872 (2009)CrossRefGoogle Scholar
- 26.Wagemans, J., Elder, J., Kubovy, M., Palmer, S., Peterson, M., Singh, M.: A century of gestalt psychology in visual perception: I. perceptual grouping and figure-ground organisation. Computer Vision, Graphics, and Image Processing 31, 156–177 (1985)CrossRefGoogle Scholar
- 27.Feldman, J.: Formation of visual “objects” in the early computation of spatial relations. Perception and Psychophysics 69(5), 816–827 (2007)CrossRefGoogle Scholar
- 28.Bertin, J.: Semiology of Graphics. Uni. of Wisconsin Press (1983)Google Scholar
- 29.Purchase, H.: Experimental Human Computer Interaction: A Practical Guide with Visual Examples. Cambridge University Press (2012)Google Scholar