Advertisement

International Conference on Theory and Application of Diagrams

Diagrams 2014: Diagrammatic Representation and Inference pp 1-8 | Cite as

Octilinear Force-Directed Layout with Mental Map Preservation for Schematic Diagrams

  • Daniel Chivers
  • Peter Rodgers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8578)

Abstract

We present an algorithm for automatically laying out metro map style schematics using a force-directed approach, where we use a localized version of the standard spring embedder forces combined with an octilinear magnetic force. The two types of forces used during layout are naturally conflicting, and the existing method of simply combining these to generate a resultant force does not give satisfactory results. Hence we vary the forces, emphasizing the standard forces in the beginning to produce a well distributed graph, with the octilinear forces becoming prevalent at the end of the layout, to ensure that the key requirement of line angles at intervals of 45° is obtained. Our method is considerably faster than the more commonly used search-based approaches, and we believe the results are superior to the previous force-directed approach. We have further developed this technique to address the issues of dynamic schematic layout. We use a Delaunay triangulation to construct a schematic “frame”, which is used to retain relative node positions and permits full control of the level of mental map preservation. This technique is the first to combine mental map preservation techniques with the additional layout criteria of schematic diagrams. To conclude, we present the results of a study to investigate the relationship between the level of mental map preservation and the user response time and accuracy.

Keywords

force directed  schematic layout  Delaunay triangulation  mental map preservation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stott, J., Rodgers, P.J., Martinez-Ovando, J.C., Walker, S.G.: Automatic Metro Map Layout Using Multicriteria Optimization. TVCG 6, 101–114 (2011)Google Scholar
  2. 2.
    Anand, S., Avelar, S., Ware, M.J., Jackson, M.: Automated Schematic Map Production using Simulated Annealing and Gradient Descent Approaches. In: 15th Annual GISRUK (2007)Google Scholar
  3. 3.
    Nöllenburg, M., Wolff, A.: A Mixed-Integer Program for Drawing High-Quality Metro Maps. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 321–333. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Merrick, D., Gudmundsson, J.: Path Simplification for Metro Map Layout. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 258–269. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Eades, P.: A Heuristic for Graph Drawing. Congressus Numerantium 42, 149–160 (1984)MathSciNetGoogle Scholar
  6. 6.
    Sugiyama, K., Misue, K.: A Simple and Unified Method for Drawing Graphs: Magnetic-Spring Algorithm. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 364–375. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  7. 7.
    Hong, S.-H., Merrick, D., Nascimento, H.A.D.: Automatic Visualisation of Metro Maps. IJVLC 17, 203–224 (2006)Google Scholar
  8. 8.
    Wang, Y.-S., Chi, M.-T.: Focus+Context Metro Maps. TVCG 17, 2528–2535 (2011)Google Scholar
  9. 9.
    Archembault, D., Purchase, H.C., Pinaud, B.: Animation, Small Multiples, and the Effect of Mental Map Preservation in Dynamic Graphs. TVCG 17, 539–552 (2011)Google Scholar
  10. 10.
    Purchase, H.C., Samra, A.: Extremes are Better: Investigating Mental Map Preservation in Dynamic Graphs. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 60–73. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Alper, B., Riche, N.H., Ramos, G., Czerwinski, M.: Design Study of LineSets, a Novel Set Visualization Technique. TVCG 17, 2259–2267 (2011)Google Scholar
  12. 12.
    Purchase, H.C.: Experimental Human-Computer Interaction. Cambridge University Press (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daniel Chivers
    • 1
  • Peter Rodgers
    • 1
  1. 1.The University of KentCanterburyUK

Personalised recommendations