Advertisement

Uncertainties Due to Within-Species Variation in Comparative Studies: Measurement Errors and Statistical Weights

  • László Zsolt GaramszegiEmail author

Abstract

Comparative studies investigating evolutionary questions are generally concerned with interspecific variation of trait values, while variations observed within species are inherently assumed to be unimportant. However, beside measurement errors, several biological mechanisms (such as behaviors that flexibly change within individuals, differences between sexes or other groups of individuals, spatial, or temporal variations across populations of the same species) can generate considerable variation in the focal characters at the within-species level. Such within-species variations can raise uncertainties and biases in parameter estimates, especially when the data are hierarchically structured along a phylogeny, thus they require appropriate statistical treatment. This chapter reviews different analytical solutions that have been recently developed to account for the unwanted effect of within-species variation. However, I will also emphasize that within-species variation should not necessarily be regarded as a confounder, but in some cases, it can be subject to evolutionary forces and delineate interesting biological questions. The argumentation will be accompanied with a detailed practical material that will help users adopt the methodology to the data at hand.

References

  1. Adolph SC, Hardin JS (2007) Estimating phenotypic correlations: correcting for bias due to intraindividual variability. Funct Ecol 21(1):178–184CrossRefGoogle Scholar
  2. Arnold C, Nunn CL (2010) Phylogenetic targeting of research effort in evolutionary biology. Am Nat 176:601–612CrossRefGoogle Scholar
  3. Ashton KG (2004) Comparing phylogenetic signal in intraspecific and interspecific body size datasets. J Evol Biol 17:1157–1161CrossRefGoogle Scholar
  4. Blomberg S, Garland TJ, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more laible. Evolution 57:717–745CrossRefGoogle Scholar
  5. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135CrossRefGoogle Scholar
  6. Bollen KA (1989) Structural equations with latent variables. Wiley, New YorkCrossRefGoogle Scholar
  7. Buonaccorsi JP (2010) Measurement error: models, methods, and applications. Chapman and Hall, New YorkCrossRefGoogle Scholar
  8. Caro TM, Roper R, Young M, Dank GR (1979) Inter-observer reliability. Behaviour 69:303–315. doi: 10.1163/156853979x00520 CrossRefGoogle Scholar
  9. Chesher A (1991) The effect of measurement error. Biometrika 78(3):451–462. doi: 10.1093/biomet/78.3.451 CrossRefGoogle Scholar
  10. Cheverud JM, Dow MM, Leutenegger W (1985) The quantitative assessment of phylogenetic constraints in comparative analyses: sexual dimorphism of body weight among primates. Evolution 39:1335–1351CrossRefGoogle Scholar
  11. Christman MC, Jernigan RW, Culver D (1997) A comparison of two models for estimating phylogenetic effect on trait variation. Evolution 51(1):262–266. doi: 10.2307/2410979 CrossRefPubMedGoogle Scholar
  12. Cornillon PA, Pontier D, Rochet MJ (2000) Autoregressive models for estimating phylogenetic and environmental effects: accounting for within-species variations. J Theor Biol 202(4):247–256. doi: 10.1006/jtbi.1999.1040 CrossRefPubMedGoogle Scholar
  13. de Villemereuil P, Wells JA, Edwards RD, Blomberg SP (2012) Bayesian models for comparative analysis integrating phylogenetic uncertainty. BMC Evol Biol 12: doi: 10.1186/1471-2148-12-102 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc Ser B Methodol 39(1):1–38Google Scholar
  15. Doughty P (1996) Statistical analysis of natural experiments in evolutionary biology: comments on recent criticisms on the use of comparative methods to study adaptation. Am Nat 148:943–956CrossRefGoogle Scholar
  16. Draper NR, Smith H (1981) Applied regression analysis. Wiley, New York (2nd edn)Google Scholar
  17. Edwards SV, Kot M (1995) Comparative methods at the species level: geographic variation in morphology and group size in Grey-crowned Babblers (Pomatostomus temporalis). Evolution 49:1134–1146PubMedGoogle Scholar
  18. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15CrossRefGoogle Scholar
  19. Felsenstein J (2002) Contrasts for a within-species comparative method. In: Slatkin M, Veuille M (eds) Modern developments in theoretical population genetics. Oxford University Press, Oxford, pp 118–129Google Scholar
  20. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, SunderlandGoogle Scholar
  21. Felsenstein J (2008) Comparative methods with sampling error and within-species variation: contrasts revisited and revised. Am Nat 171(6):713–725CrossRefGoogle Scholar
  22. Fisher DO, Blomberg SP, Owens IPF (2003) Extrinsic versus intrinsic factors in the decline and extinction of Australian marsupials. Proc R Soc Lond Ser B-Biol Sci 270(1526):1801–1808CrossRefGoogle Scholar
  23. Freckleton RP (2009) The seven deadly sins of comparative analysis. J Evol Biol 22(7):1367–1375CrossRefGoogle Scholar
  24. Fuller WA (1987) Measurement error models. Wiley, New YorkCrossRefGoogle Scholar
  25. Garamszegi LZ, Møller AP (2010) Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biol Rev 85:797–805Google Scholar
  26. Garamszegi LZ, Møller AP (2011) Nonrandom variation in within-species sample size and missing data in phylogenetic comparative studies. Syst Biol 60:876–880CrossRefGoogle Scholar
  27. Garamszegi LZ, Møller AP (2012) Untested assumptions about within-species sample size and missing data in interspecific studies. Behav Ecol Sociobiol 66:1363–1373CrossRefGoogle Scholar
  28. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, CambridgeGoogle Scholar
  29. Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. Ieee Transactions on Pattern Analysis and Machine Intelligence 6(6):721–741CrossRefGoogle Scholar
  30. Gittleman JL, Kot M (1990) Adaptation: statistics and a null model for estimating phylogenetic effects. Syst Zool 39(3):227–241. doi: 10.2307/2992183 CrossRefGoogle Scholar
  31. Grafen A (1989) The phylogenetic regression. Philos Trans R Soc B 326:119–157CrossRefGoogle Scholar
  32. Hadfield JD, Nakagawa S (2010) General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J Evol Biol 23:494–508CrossRefGoogle Scholar
  33. Hansen TF, Bartoszek K (2012) Interpreting the evolutionary regression: the interplay between observational and biological errors in phylogenetic comparative studies. Syst Biol 61:413–425CrossRefGoogle Scholar
  34. Harmon LJ, Losos JB (2005) The effect of intraspecific sample size on type I and type II error rates in comparative studies. Evolution 59:2705–2710CrossRefGoogle Scholar
  35. Hastings WK (1970) Monte carlo sampling methods using markov chains and their applications. Biometrika 57(1):97–109. doi: 10.2307/2334940 CrossRefGoogle Scholar
  36. Housworth EA, Martins EP, Lynch M (2004) The phylogenetic mixed model. Am Nat 163:84–96CrossRefGoogle Scholar
  37. Ives AR, Midford PE, Garland T (2007) Within-species variation and measurement error in phylogenetic comparative methods. Syst Biol 56(2):252–270CrossRefGoogle Scholar
  38. Judge GG, Griffiths WE, Hill RC, Lutkepohl H, Lee T-C (1985) The theory and practice of econometrics. Wiley, New YorkGoogle Scholar
  39. Kreft IGG, de Leeuw J, Aiken LS (1995) The effect of different forms of centering in hierarchical linear models. Multivar Behav Res 30:1–21CrossRefGoogle Scholar
  40. Kutsukake N, Innan H (2012) Simulation-based likelihood approach for evolutionary models of phenotypic traits on phylogeny. Evolution (in press)Google Scholar
  41. Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121CrossRefGoogle Scholar
  42. Lynch M (1991) Methods for the analysis of comparative data in evolutionary biology. Evolution 45(5):1065–1080CrossRefGoogle Scholar
  43. Madansky A (1959) The fitting of straight lines when both variables are subject to error. J Am Stat Assoc 54:173–205CrossRefGoogle Scholar
  44. Manisha S (2001) An estimation of population mean in the presence of measurement errors. J Indian Soc Agric Stat 54:13–18Google Scholar
  45. Martins EP (1994) Estimating the rate of phenotypic evolution from comparative data. Am Nat 144:193–209CrossRefGoogle Scholar
  46. Martins EP (2004) COMPARE, version 4.6b. Computer programs for the statistical analysis of comparative data. Distributed by the author at http://compare.bio.indiana.edu/, Department of Biology, Indiana University, Bloomington IN
  47. Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667CrossRefGoogle Scholar
  48. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092Google Scholar
  49. Møller AP, Garamszegi LZ (2012) Between individual variation in risk taking behavior and its life history consequences. Behav Ecol 23:843–853CrossRefGoogle Scholar
  50. Monkkonen M, Martin TE (2000) Sensitivity of comparative analyses to population variation in trait values: clutch size and cavity excavation tendencies. J Avian Biol 31(4):576–579. doi: 10.1034/j.1600-048X.2000.310417.x CrossRefGoogle Scholar
  51. Nakagawa S, Freckleton R (2008) Missing inaction: the dangers of ignoring missing data. Trends Ecol Evol 23:592–596. doi: 10.1016/j.tree.2008.06.014 CrossRefPubMedGoogle Scholar
  52. Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev 85:935–956PubMedGoogle Scholar
  53. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear statistical models. Irwin, ChicagoGoogle Scholar
  54. Paradis E (2011) Analysis of phylogenetics and evolution with R, 2nd edn. Springer, BerlinGoogle Scholar
  55. Purvis A, Rambaut A (1995) Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comput Appl Biosci 11:247–251PubMedGoogle Scholar
  56. Purvis A, Webster AJ (1999) Phylogenetically independent comparisons and primate phylogeny. In: Lee PC (ed) Comparative primate socioecology. Cambridge University Press, Cambridge, pp 44–70CrossRefGoogle Scholar
  57. Reed GF, Lynn F, Meade BD (2002) Use of coefficient of variation in assessing variability of quantitative assays. Clin Diagn Lab Immunol 9(6):1235–1239. doi: 10.1128/cdli.9.6.1235-1239.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Revell LJ (2010) Phylogenetic signal and linear regression on species data. Methods Ecol Evol 1(4):319–329. doi: 10.1111/j.2041-210X.2010.00044.x CrossRefGoogle Scholar
  59. Revell LJ, Reynolds RG (2012) A new Bayesian method for fitting evolutionary models to comparative data with intraspecific variation. Evolution 66(9):2697–2707. doi: 10.1111/j.1558-5646.2012.01645.x CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ricklefs RE, Starck JM (1996) Applications of phylogenetically independent contrasts: a mixed progress report. Oikos 77(1):167–172CrossRefGoogle Scholar
  61. Snijders TAB, Bosker RJ (1999) Multilevel analysis—an introduction to basic and advanced multilevel modelling. Sage, LondonGoogle Scholar
  62. Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W. H. Freeman and Co, New YorkGoogle Scholar
  63. Stone GN, Nee S, Felsenstein J (2011) Controlling for non-independence in comparative analysis of patterns across populations within species. Philos Trans R Soc Lond B Biol Sci 366:1410–1424CrossRefGoogle Scholar
  64. Taper ML, Marquet PA (1996) How do species really divide resources? Am Nat 147:1072–1086CrossRefGoogle Scholar
  65. van de Pol MV, Wright J (2009) A simple method for distinguishing within- versus between-subject effects using mixed models. Anim Behav 77(3):753–758CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Evolutionary EcologyEstación Biológica de Doñana—CSICSevillaSpain

Personalised recommendations