The fossil record holds considerable promise for furthering our understanding of macroevolutionary patterns, particularly allowing us to analyze hypotheses which cannot be tested with phylogenies of extant taxa alone. However, although there is a growing number of paleontological studies that use phylogenetic comparative methods to address questions of trait evolution, there is little documentation on obtaining the timescaled phylogenies of fossil taxa required for such analyses. This chapter is an attempt to introduce interested readers to the issues involved with that process, including the uncertainties and biases involved with fossil data, which some might inadvertently overlook. In addition, I illustrate how the fossil records of different groups can be very different in terms of the datasets available, including the issues of that data, and stress that there is no ‘one size fits all’ solution. Instead, for several hypothetical examples, I recommend several approaches that explicitly consider potential uncertainties, unavailable data, and biasing factors.



I’d like to thank D. Wright and P. Smits for their comments on an early draft of this manuscript. Suggestion from two anonymous reviewers and the editor greatly improved this chapter. Many of the ideas came from conversations with G. Lloyd, G. Slater, L. Soul, A. Wright, N. Matzke, J. Mitchell, K. Larson, M. Pennell, and E. King.


  1. Alexandrou MA, Swartz BA, Matzke NJ, Oakley TH (2013) Genome duplication and multiple evolutionary origins of complex migratory behavior in Salmonidae. Mol Phylogenet Evol 69(3):514–523. doi: PubMedGoogle Scholar
  2. Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G, Harmon LJ (2009) Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci 106(32):13410–13414Google Scholar
  3. Alroy J (1998) Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280(5364):731–734PubMedGoogle Scholar
  4. Alroy J (2000) Understanding the dynamics of trends within evolving lineages. Paleobiology 26(3):319–329Google Scholar
  5. Aze T, Ezard THG, Purvis A, Coxall HK, Stewart DRM, Wade BS, Pearson PN (2011) A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol Rev 86(4):900–927. doi: 10.1111/j.1469-185X.2011.00178.x CrossRefPubMedGoogle Scholar
  6. Bapst DW (2012) paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol Evol 3(5):803–807. doi: 10.1111/j.2041-210X.2012.00223.x CrossRefGoogle Scholar
  7. Bapst DW (2013a) A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods Ecol Evol 4(8):724–733. doi: 10.1111/2041-210x.12081 CrossRefGoogle Scholar
  8. Bapst DW (2013b) When can clades be potentially resolved with morphology? PLoS ONE 8(4):e62312. doi: 10.1371/journal.pone.0062312 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bapst DW (2014) Assessing the effect of time-scaling methods on phylogeny-based analyses in the fossil record. Paleobiology 40(3):331–351Google Scholar
  10. Bapst DW, Bullock PC, Melchin MJ, Sheets HD, Mitchell CE (2012) Graptoloid diversity and disparity became decoupled during the Ordovician mass extinction. Proc Natl Acad Sci 109(9):3428–3433Google Scholar
  11. Bates DEB, Kozlowska A, Lenz AC (2005) Silurian retiolitid graptolites: morphology and evolution. Acta Palaeontol Pol 50(4):705–720Google Scholar
  12. Bell MA, Braddy SJ (2012) Cope’s rule in the Ordovician trilobite family Asaphidae (order Asaphida): patterns across multiple most parsimonious trees. Hist Biol 24(3):223–230. doi: 10.1080/08912963.2011.616201 CrossRefGoogle Scholar
  13. Benson RBJ, Choiniere JN (2013) Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds. Proceedings of the Royal Society B: Biological Sciences 280(1768)PubMedGoogle Scholar
  14. Benson RBJ, Evans M, Druckenmiller PS (2012) High diversity, low disparity and small body size in Plesiosaurs (Reptilia, Sauropterygia) from the Triassic-Jurassic boundary. PLoS ONE 7(3):e31838. doi: 10.1371/journal.pone.0031838 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Benton MJ, Donoghue PCJ (2007) Paleontological evidence to date the tree of life. Mol Biol Evol 24(1):26–53PubMedGoogle Scholar
  16. Benton MJ, Hitchin R (1997) Congruence between phylogenetic and stratigraphic data on the history of life. Proc R Soc Lond B: Biol Sci 264(1383):885–890Google Scholar
  17. Benton MJ, Storrs GW (1994) Testing the quality of the fossil record: Paleontological knowledge is improving. Geology 22(2):111–114Google Scholar
  18. Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446(7135):507–512PubMedGoogle Scholar
  19. Boettiger C, Coop G, Ralph P (2012) Is your phylogeny informative? Measuring the power of comparative methods. Evolution 66(7):2240–2251. doi: 10.1111/j.1558-5646.2011.01574.x CrossRefPubMedPubMedCentralGoogle Scholar
  20. Boyd CA, Cleland TP, Marrero NL, Clarke JA (2011) Exploring the effects of phylogenetic uncertainty and consensus trees on stratigraphic consistency scores: a new program and a standardized method. Cladistics 27(1):52–60. doi: 10.1111/j.1096-0031.2010.00320.x CrossRefGoogle Scholar
  21. Brocklehurst N, Kammerer CF, Fröbisch J (2013) The early evolution of synapsids, and the influence of sampling on their fossil record. Paleobiology 39:470–490. doi: 10.1666/12049 CrossRefGoogle Scholar
  22. Bronzati M, Montefeltro FC, Langer MC (2012) A species-level supertree of Crocodyliformes. Hist Biol 24(6):598–606. doi: 10.1080/08912963.2012.662680 CrossRefGoogle Scholar
  23. Brusatte SL, Benton MJ, Ruta M, Lloyd GT (2008) Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321(5895):1485–1488PubMedGoogle Scholar
  24. Bulman OMB (1970) Treatise in invertebrate paleontology, Pt. V: Graptolithina, vol Part V. Treatise on invertebrate paleontology. University of Kansas Press and the Geological Society of America, Lawrence, KSGoogle Scholar
  25. Chan KMA, Moore BR (2002) Whole-tree methods for detecting differential diversification rates. Syst Biol 51(6):855–865PubMedGoogle Scholar
  26. Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  27. Davies TJ, Kraft NJB, Salamin N, Wolkovich EM (2011) Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism. Ecology 93(2):242–247. doi: 10.1890/11-1360.1 CrossRefGoogle Scholar
  28. Didier G, Royer-Carenzi M, Laurin M (2012) The reconstructed evolutionary process with the fossil record. J Theor Biol 315:26–37. doi: 10.1016/j.jtbi.2012.08.046 CrossRefPubMedGoogle Scholar
  29. Eldredge N (1971) The allopatric model and phylogeny in Paleozoic invertebrates. Evolution 25(1):156–167PubMedGoogle Scholar
  30. Eldredge N, Thompson JN, Brakefield PM, Gavrilets S, Jablonski D, Jackson JBC, Lenski RE, Lieberman BS, McPeek MA, Miller W (2005) The dynamics of evolutionary stasis. Paleobiology 31(sp5):133–145. doi: 10.1666/0094-8373(2005)031[0133:TDOES]2.0.CO;2 Google Scholar
  31. Evans AR, Jones D, Boyer AG, Brown JH, Costa DP, Ernest SKM, Fitzgerald EMG, Fortelius M, Gittleman JL, Hamilton MJ, Harding LE, Lintulaakso K, Lyons SK, Okie JG, Saarinen JJ, Sibly RM, Smith FA, Stephens PR, Theodor JM, Uhen MD (2012) The maximum rate of mammal evolution. Proc Natl Acad Sci 109(11):4187–4190PubMedGoogle Scholar
  32. Ezard THG, Aze T, Pearson PN, Purvis A (2011) Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332(6027):349–351PubMedGoogle Scholar
  33. Felsenstein J (1988) Phylogenies and Quantitative Characters. Annu Rev Ecol Syst 19(1):445Google Scholar
  34. Finarelli JA, Flynn JJ (2006) Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Syst Biol 55(2):301–313PubMedGoogle Scholar
  35. Fisher DC (1991) Phylogenetic analysis and its implication in evolutionary paleobiology. In: Gilinsky NL, Signor PW (eds) Analytical paleobiology. Paleontological Society, Knoxville, Tennessee, pp 103–122Google Scholar
  36. Fisher DC (1994) Stratocladistics: morphological and temporal patterns and their relation to phylogenetic process. In: Grande L, Rieppel O (eds) Interpreting the hierarchy of nature. Academic Press, San Diego, pp 133–171Google Scholar
  37. Fisher DC (2008) Stratocladistics: Integrating Temporal Data and Character Data in Phylogenetic Inference. Annu Rev Ecol Evol Syst 39(1):365–385Google Scholar
  38. Foote M (1996) On the probability of ancestors in the fossil record. Paleobiology 22(2):141–151Google Scholar
  39. Foote M (1997) Estimating taxonomic durations and preservation probability. Paleobiology 23(3):278–300Google Scholar
  40. Foote M (2000) Origination and extinction components of taxonomic diversity: general problems. In: Erwin DH, Wing SL (eds) Deep time: paleobiology’s perspective. The Paleontological Society, Lawrence, Kansas, pp 74–102Google Scholar
  41. Foote M, Raup DM (1996) Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22(2):121–140PubMedGoogle Scholar
  42. Fortey RA, Cooper RA (1986) A phylogenetic classification of the graptoloids. Palaeontology 29(4):631–654Google Scholar
  43. Friedman M (2009) Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction. Proc Natl Acad Sci 106(13):5218–5223PubMedGoogle Scholar
  44. Fusco G, Garland JT, Hunt G, Hughes NC (2012) Developmental trait evolution in trilobites. Evolution 66(2):314–329. doi: 10.1111/j.1558-5646.2011.01447.x CrossRefPubMedGoogle Scholar
  45. Garland T Jr, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41(1):18–32Google Scholar
  46. Gates TA, Prieto-Márquez A, Zanno LE (2012) Mountain building triggered late cretaceous North American megaherbivore dinosaur radiation. PLoS ONE 7(8):e42135. doi: 10.1371/journal.pone.0042135 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Gingerich PD (1979) The stratophenetic approach to phylogeny reconstruction in vertebrate paleontology. Phylogenet Anal Paleontol 1:41–77Google Scholar
  48. Green WA, Hunt G, Wing SL, DiMichele WA (2011) Does extinction wield an axe or pruning shears? How interactions between phylogeny and ecology affect patterns of extinction. Paleobiology 37(1):72–91. doi: 10.1666/09078.1 CrossRefGoogle Scholar
  49. Guinot G, Adnet S, Cappetta H (2012) An analytical approach for estimating fossil record and diversification events in sharks, skates and rays. PLoS ONE 7(9):e44632. doi: 10.1371/journal.pone.0044632 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hannisdal B (2006) Phenotypic evolution in the fossil record: numerical experiments. J Geol 114(2):133–153. doi: 10.1086/499569 CrossRefGoogle Scholar
  51. Hannisdal B (2009) Inferring phenotypic evolution in the fossil record by Bayesian inversion. Paleobiology 33(1):98–115. doi: 10.1666/06038.1 CrossRefGoogle Scholar
  52. Heath TA (2012) A hierarchical Bayesian model for calibrating estimates of species divergence times. Syst Biol 61(5):793–809PubMedPubMedCentralGoogle Scholar
  53. Holland SM (2003) Confidence limits on fossil ranges that account for facies changes. Paleobiology 29(4):468–479Google Scholar
  54. Hopkins MJ (2011) How species longevity, intraspecific morphological variation, and geographic range size are related: a comparison using late Cambrian trilobites. Evolution 65(11):3253–3273. doi: 10.1111/j.1558-5646.2011.01379.x CrossRefPubMedGoogle Scholar
  55. Hopkins MJ (2013) Decoupling of taxonomic diversity and morphological disparity during decline of the Cambrian trilobite family Pterocephaliidae. J Evol Biol 26(8):1665–1676. doi: 10.1111/jeb.12164 CrossRefPubMedGoogle Scholar
  56. Huelsenbeck JP (1994) Comparing the stratigraphic record to estimates of phylogeny. Paleobiology 20(4):470–483Google Scholar
  57. Huelsenbeck JP, Rannala B (1997) Maximum likelihood estimation of phylogeny using stratigraphic data. Paleobiology 23(2):174–180Google Scholar
  58. Hunt G (2013) Testing the link between phenotypic evolution and speciation: an integrated palaeontological and phylogenetic analysis. Methods Ecol Evol 4(8):714–723. doi: 10.1111/2041-210x.12085 CrossRefGoogle Scholar
  59. Hunt G, Carrano MT (2010) Models and methods for analyzing phenotypic evolution in lineages and clades. In: Alroy J, Hunt G (eds) Short course on quantitative methods in paleobiology, vol 16., Paleontological SocietyNew Haven, Conneticut, pp 245–269Google Scholar
  60. Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature 491(7424):444–448. PubMedGoogle Scholar
  61. Kendall DG (1948) On the generalized “birth-and-death” process. Ann Math Stat 19(1):1–15Google Scholar
  62. Lane A, Janis CM, Sepkoski JJ (2005) Estimating paleodiversity: a test of the taxic and phylogenetic methods. Paleobiology 31(1):21–34Google Scholar
  63. Laurin M (2004) The evolution of body size, Cope’s rule and the origin of amniotes. Syst Biol 53(4):594–622PubMedGoogle Scholar
  64. Laurin M (2011) Use of paleontological and phylogenetic data in comparative and paleobiological analyses: a few recent developments. In: Pontarotti P (ed) Evolutionary biology: concepts, biodiversity, macroevolution and genome evolution. Springer, Berlin, pp 121–138. doi:10.1007/978-3-642-20763-1_8 Google Scholar
  65. Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50(6):913–925PubMedGoogle Scholar
  66. Liow LH, Quental TB, Marshall CR (2010) When can decreasing diversification rates be detected with molecular phylogenies and the fossil record? Syst Biol 59(6):646–659PubMedGoogle Scholar
  67. Lloyd GT (2012) A refined modelling approach to assess the influence of sampling on palaeobiodiversity curves: new support for declining Cretaceous dinosaur richness. Biol Lett 8(1):123–126PubMedGoogle Scholar
  68. Lloyd GT, Davis KE, Pisani D, Tarver JE, Ruta M, Sakamoto M, Hone DWE, Jennings R, Benton MJ (2008) Dinosaurs and the Cretaceous terrestrial revolution. Proc Roy Soc B: Biol Sci 275(1650):2483–2490Google Scholar
  69. Lloyd GT, Wang SC, Brusatte SL (2012) Identifying heterogeneity in rates of morphological evolution: discrete character change in the evolution of Lungfish (Sarcopterygii, Dipnoi). Evolution 66(2):330–348. doi: 10.1111/j.1558-5646.2011.01460.x CrossRefPubMedGoogle Scholar
  70. Losos Jonathan B (2010) Adaptive radiation, ecological opportunity, and evolutionary determinism. Am Nat 175(6):623–639. doi: 10.1086/652433 CrossRefPubMedGoogle Scholar
  71. Marcot JD, Fox DL (2008) StrataPhy: a new computer program for stratocladistics analysis. Palaeo-Electronica 11(1):5aGoogle Scholar
  72. Mooers AØ, Heard SB (1997) Inferring evolutionary processes from phylogenetic tree shape. Q Rev Biol 72(1):31–54Google Scholar
  73. Nee S, Mooers AO, Harvey PH (1992) Tempo and mode of evolution revealed from molecular phylogenies. Proc Natl Acad Sci USA 89(17):8322–8326Google Scholar
  74. Neige P, Brayard A, Gerber S, Rouget I (2009) Les Ammonoïdes (Mollusca, Cephalopoda): avancées et contributions récentes à la paléobiologie évolutive. CR Palevol 8(2–3):167–178Google Scholar
  75. Norell MA (1992) Taxic origin and temporal diversity: the effect of phylogeny. In: Novacek MJ, Wheeler QD (eds) Extinction and phylogeny. Columbia University Press, New York, pp 89–118Google Scholar
  76. Norell MA (1996) Ghost taxa, ancestors, and assumptions: a comment on Wagner. Paleobiology 22(3):453–455Google Scholar
  77. Norell MA, Novacek MJ (1992) The fossil record and evolution: comparing cladistic and paleontologic evidence for vertebrate history. Science 255(5052):1690–1693PubMedGoogle Scholar
  78. Nowak MD, Smith AB, Simpson C, Zwickl DJ (2013) A simple method for estimating informative node age priors for the fossil calibration of molecular divergence time analyses. PLoS ONE 8(6):e66245. doi: 10.1371/journal.pone.0066245 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Oakley TH, Cunningham CW (2000) Independent contrasts succeed where ancestor reconstruction fails in a known bacteriophage phylogeny. Evolution 54(2):397–405PubMedGoogle Scholar
  80. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401(6756):877–884PubMedPubMedCentralGoogle Scholar
  81. Patzkowsky ME, Holland SM (2012) Stratigraphic paleobiology: understanding the distribution of fossil taxa in time and space. University of Chicago Press, Chicago, ILGoogle Scholar
  82. Pearson PN (1998) Speciation and extinction asymmetries in paleontological phylogenies: evidence for evolutionary progress? Paleobiology 24(3):305–335Google Scholar
  83. Pennell MW, Harmon LJ, Uyeda JC (2014) Is there room for punctuated equilibrium in macroevolution? Trends Ecol Evol 29(1):23–32. Google Scholar
  84. Peters SE, Foote M (2001) Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27(4):583–601Google Scholar
  85. Pfenninger M, Schwenk K (2007) Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol 7(1):121PubMedPubMedCentralGoogle Scholar
  86. Pittman M, Gatesy SM, Upchurch P, Goswami A, Hutchinson JR (2013) Shake a tail feather: the evolution of the theropod tail into a stiff aerodynamic surface. PLoS ONE 8(5):e63115. doi: 10.1371/journal.pone.0063115 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Pol D, Norell MA (2001) Comments on the Manhattan stratigraphic measure. Cladistics 17(3):285–289. doi: 10.1111/j.1096-0031.2001.tb00125.x CrossRefGoogle Scholar
  88. Pol D, Norell MA (2006) Uncertainty in the age of fossils and the stratigraphic fit to phylogenies. Syst Biol 55(3):512–521PubMedGoogle Scholar
  89. Polly PD (1997) Ancestry and species definition in paleontology: a stratocladistic analysis of Paleocene-Eocene Viverravidae (Mammalia, Carnivora) from Wyoming, vol 30(1). Contributions from the Museum of Paleontology, University of Michigan, pp 1–53Google Scholar
  90. Pyenson N, Sponberg S (2011) Reconstructing body size in extinct crown Cetacea (Neoceti) using allometry, phylogenetic methods and tests from the fossil record. J Mamm Evol 18(4):269–288. doi: 10.1007/s10914-011-9170-1 CrossRefGoogle Scholar
  91. Pyron RA (2011) Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Syst Biol 60(4):466–481PubMedGoogle Scholar
  92. Raia P, Carotenuto F, Passaro F, Piras P, Fulgione D, Werdelin L, Saarinen J, Fortelius M (2013) Rapid action in the Palaeogene, the relationship between phenotypic and taxonomic diversification in Coenozoic mammals. Proc Roy Soc B: Biol Sci 280(1750)Google Scholar
  93. Raup DM (1976) Species diversity in the Phanerozoic: an interpretation. Paleobiology 2(4):289–297Google Scholar
  94. Raup DM (1985) Mathematical models of cladogenesis. Paleobiology 11(1):42–52Google Scholar
  95. Raup DM, Gould SJ, Schopf TJM, Simberloff DS (1973) Stochastic models of phylogeny and the evolution of diversity. J Geol 81:525–542Google Scholar
  96. Rieppel O, Kearney M (2002) Similarity. Biol J Linnean Soc 75(1):59–82. doi: 10.1046/j.1095-8312.2002.00006.x CrossRefGoogle Scholar
  97. Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP (2012) A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst Biol 61(6):973–999PubMedPubMedCentralGoogle Scholar
  98. Roopnarine PD (2005) The likelihood of stratophenetic-based hypotheses of genealogical succession. Spec Pap Palaeontol 73:143–157Google Scholar
  99. Roy K, Hunt G, Jablonski D (2009) Phylogenetic conservatism of extinctions in marine bivalves. Science 325(5941):733–737PubMedGoogle Scholar
  100. Ruta M, Cisneros JC, Liebrecht T, Tsuji LA, Muller J (2011) Amniotes through major biological crises: faunal turnover among Parareptiles and the end-Permian mass extinction. Palaeontology 54(5):1117–1137. doi: 10.1111/j.1475-4983.2011.01051.x CrossRefGoogle Scholar
  101. Ruta M, Pisani D, Lloyd GT, Benton MJ (2007) A supertree of Temnospondyli: cladogenetic patterns in the most species-rich group of early tetrapods. Proc Roy Soc B: Biol Sci 274(1629):3087–3095Google Scholar
  102. Ruta M, Wagner PJ, Coates MI (2006) Evolutionary patterns in early tetrapods. I. Rapid initial diversification followed by decrease in rates of character change. Proc Roy Soc B: Biol Sci 273(1598):2107–2111PubMedGoogle Scholar
  103. Sadler PM (1981) Sediment accumulation rates and the completeness of stratigraphic sections. J Geol 89(5):569–584Google Scholar
  104. Sadler PM, Cooper RA, Melchin M (2009) High-resolution, early Paleozoic (Ordovician-Silurian) time scales. Geol Soc Am Bull 121(5–6):887–906Google Scholar
  105. Sallan LC, Friedman M (2012) Heads or tails: staged diversification in vertebrate evolutionary radiations. Proc Roy Soc B: Biol Sci 279(1735):2025–2032Google Scholar
  106. Sanderson MJ, Purvis A, Henze C (1998) Phylogenetic supertrees: assembling the trees of life. Trends Ecol Evol 13(3):105–109PubMedGoogle Scholar
  107. Scotland RW, Olmstead RG, Bennett JR (2003) Phylogeny reconstruction: the role of morphology. Syst Biol 52(4):539–548PubMedGoogle Scholar
  108. Siddall ME (1996) Stratigraphic consistency and the shape of things. Syst Biol 45(1):111–115Google Scholar
  109. Simpson C, Kiessling W, Mewis H, Baron-Szabo RC, Müller J (2011) Evolutionary diversification of reef corals: a comparison of the molecular and fossil records. Evolution 65(11):3274–3284. doi: 10.1111/j.1558-5646.2011.01365.x CrossRefPubMedGoogle Scholar
  110. Slater GJ (2013) Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous-Palaeogene boundary. Methods Ecol Evol 4(8):734–744. doi: 10.1111/2041-210x.12084 CrossRefGoogle Scholar
  111. Slater GJ, Harmon LJ, Alfaro ME (2012) Integrating fossils with molecular phylogenies improves inference of trait evolution. Evolution 66(12):3931–3944. doi: 10.1111/j.1558-5646.2012.01723.x CrossRefPubMedGoogle Scholar
  112. Smith AB (1994) Systematics and the fossil record: documenting evolutionary patterns. Blackwell Scientific, OxfordGoogle Scholar
  113. Smith AB, McGowan AJ (2007) The shape of the Phanerozoic marine palaeodiversity curve: how much can be predicted from the sedimentary rock record of Western Europe? Palaeontology 50(4):765–774Google Scholar
  114. Smith ND (2012) Body mass and foraging ecology predict evolutionary patterns of skeletal pneumaticity in the diverse “waterbird” clade. Evolution 66(4):1059–1078. doi: 10.1111/j.1558-5646.2011.01494.x CrossRefPubMedGoogle Scholar
  115. Solow AR, Smith W (1997) On fossil preservation and the stratigraphic ranges of taxa. Paleobiology 23(3):271–277Google Scholar
  116. Stadler T (2010) Sampling-through-time in birth-death trees. J Theor Biol 267(3):396–404PubMedGoogle Scholar
  117. Stanley SM (1979) Macroevolution: patterns and process. W. H Freeman & Co., San FranciscoGoogle Scholar
  118. Strauss DJ, Sadler PM (1989) Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Math Geol 21:411–427Google Scholar
  119. Tarver JE, Donoghue PCJ (2011) The trouble with topology: phylogenies without fossils provide a revisionist perspective of evolutionary history in topological analyses of diversity. Syst Biol 60(5):700–712PubMedGoogle Scholar
  120. Tomiya S (2013) Body size and extinction risk in terrestrial mammals above the species level. Am Nat 182(6):E196–E214. doi: 10.1086/673489 CrossRefPubMedGoogle Scholar
  121. Trontelj P, Fiser C (2009) Cryptic species diversity should not be trivialised. Syst Biodivers 7(01):1–3Google Scholar
  122. Valentine JW, Jablonski D, Kidwell S, Roy K (2006) Assessing the fidelity of the fossil record by using marine bivalves. Proc Natl Acad Sci 103(17):6599–6604PubMedGoogle Scholar
  123. Van Valen L (1973) A new evolutionary law. Evol Theor 1:1–30Google Scholar
  124. Wagner PJ (1995) Diversity patterns among early gastropods: contrasting taxonomic and phylogenetic descriptions. Paleobiology 21(4):410–439Google Scholar
  125. Wagner PJ (1996) Ghost taxa, ancestors, assumptions, and expectations: a reply to Norell. Paleobiology 22(3):456–460Google Scholar
  126. Wagner PJ (1998) A likelihood approach for evaluating estimates of phylogenetic relationships among fossil taxa. Paleobiology 24(4):430–449Google Scholar
  127. Wagner PJ (2000) The quality of the fossil record and the accuracy of phylogenetic inferences about sampling and diversity. Syst Biol 49(1):65–86PubMedGoogle Scholar
  128. Wagner PJ (2012) Modelling rate distributions using character compatibility: implications for morphological evolution among fossil invertebrates. Biol Lett 8(1):143–146PubMedGoogle Scholar
  129. Wagner PJ, Erwin DH (1995) Phylogenetic patterns as tests of speciation models. In: Erwin DH, Anstey RL (eds) New approaches to speciation in the fossil record. Columbia University Press, New York, pp 87–122Google Scholar
  130. Wagner PJ, Erwin DH (2006) Patterns of convergence in general shell form among Paleozoic gastropods. Paleobiology 32(2):316–337. doi: 10.1666/04092.1 CrossRefGoogle Scholar
  131. Wagner PJ, Marcot JD (2010) Probabilistic phylogenetic inference in the fossil record: current and future applications. In: Alroy J, Hunt G (eds) Short course on quantitative methods in paleobiology, vol 16., Paleontological SocietyNew Haven, Connecticut, pp 189–211Google Scholar
  132. Wagner PJ, Marcot JD (2013) Modelling distributions of fossil sampling rates over time, space and taxa: assessment and implications for macroevolutionary studies. Methods Ecol Evol 4(8):703–713. doi: 10.1111/2041-210x.12088 CrossRefGoogle Scholar
  133. Warnock RCM, Yang Z, Donoghue PCJ (2012) Exploring uncertainty in the calibration of the molecular clock. Biol Lett 8(1):156–159PubMedGoogle Scholar
  134. Wayne RK (1986) Cranial morphology of domestic and wild canids: the influence of development on morphological change. Evolution 40(2):243–261. doi: 10.2307/2408805 CrossRefPubMedGoogle Scholar
  135. Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5(1):181–183. doi: 10.1111/j.1471-8286.2004.00829.x CrossRefGoogle Scholar
  136. Wei K-Y (1994) Stratophenetic tracing of phylogeny using SIMCA pattern recognition technique: a case study of the late Neogene Planktic Foraminifera Globoconella clade. Paleobiology 20(1):52–65Google Scholar
  137. Wickström L, Donoghue PCJ (2005) Cladograms, phylogenies and the veracity of the conodont fossil record. Spec Pap Palaeontol 73:185–218Google Scholar
  138. Wills MA (1999) Congruence between phylogeny and stratigraphy: randomization tests and the gap excess ratio. Syst Biol 48(3):559–580Google Scholar
  139. Wills MA, Barrett PM, Heathcote JF (2008) The modified gap excess ratio (GER*) and the stratigraphic congruence of dinosaur phylogenies. Syst Biol 57(6):891–904PubMedGoogle Scholar
  140. Wood HM, Matzke NJ, Gillespie RG, Griswold CE (2013) Treating fossils as terminal taxa in divergence time estimation reveals ancient vicariance patterns in the Palpimanoid spiders. Syst Biol 62(2):264–284PubMedGoogle Scholar
  141. Zanno LE, Makovicky PJ (2013) No evidence for directional evolution of body mass in herbivorous theropod dinosaurs. Proc Roy Soc B: Biol Sci 280(1751)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.South Dakota School of Mines and TechnologyRapid CityUSA

Personalised recommendations