Advertisement

Event-Based Cophylogenetic Comparative Analysis

  • Michael Charleston
  • Ran Libeskind-HadasEmail author

Abstract

Cophylogenetic analysis seeks to explain the relationships between mutually evolving pairs of species such as hosts and parasites. In the last two decades, increasingly sophisticated computational methods have been developed for performing cophylogenetic analyses. In particular, event-based reconstruction methods attempt to find the best supported reconstructions of pairs of related trees using a set of events including cospeciation, duplication, transfer, and loss. This chapter formulates the cophylogeny reconstruction problem, describes the algorithmic techniques that have been developed for this problem, and compares and contrasts the software packages that implement these methods.

Notes

Acknowledgement

We are immensely grateful to László Zsolt Garamszegi for his tireless enthusiasm, guidance, and seemingly infinite patience as we struggled to complete our chapter; we also gratefully acknowledge our expert reviewers who helped improve this offering.

References

  1. Addario-Berry L, Hallett M, Lagergren J (2003) Towards Identifying Lateral Gene Transfer Events. Pacific Symposium on Biocomputing 8:279–290Google Scholar
  2. Bansal MS, Alm EJ, Kellis, M. (2013) Reconciliation revisited: handling multiple optima when reconciling with duplication, transfer, and loss. In: Research in Computational Molecular Biology (pp. 1–13). Springer, Berlin HeidelbergGoogle Scholar
  3. Brooks DR (1981) Hennig’s parasitological method: a proposed solution. Syst Zool 30:229–249CrossRefGoogle Scholar
  4. Brooks DR, van Veller MGP, McLennan DA (2001) How to do BPA, really. J Biogeogr 28(3):345–358CrossRefGoogle Scholar
  5. Bush SE, Clayton DH (2006) The role of body size in host specificity: reciprocal transfer experiments with feather lice. Evolution 60(10):2158–2167CrossRefGoogle Scholar
  6. Charleston MA (1998) Jungles: a new solution to the host-parasite phylogeny problem. Math Biosci 149:191–223CrossRefGoogle Scholar
  7. Charleston MA (2012) TreeMap 3b. A Java program for cophylogeny mapping. http://www.sydney.edu.au/engineering/it/~mcharles/software/treemap/
  8. Charleston MA, Page RDM (2002) TreeMap 2. A Macintosh program for cophylogeny mapping. http://www.sydney.edu.au/engineering/it/~mcharles/software/treemap/
  9. Charleston MA, Robertson DL (2002) Preferential host switching by primate lentiviruses can account for phylogenetic similarity with the primate phylogeny. Syst Biol 51(3):528–535CrossRefGoogle Scholar
  10. Chun TW, Davey RT, Engel D, Lane HC, Fauci AS (1999) AIDS: re-emergence of HIV after stopping therapy. Nature 401:874–875CrossRefGoogle Scholar
  11. Conow C, Fielder D, Ovadia Y, Libeskind-Hadas R (2010) Jane: a new tool for the cophylogeny reconstruction problem. Algorithms Mol Biol 5:16. doi: 10.1186/1748-7188-5-16 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cuthill JH, Charleston M (2012) Phylogenetic codivergence supports coevolution of mimetic Heliconius butterflies. PLoS ONE 7(5):e36464CrossRefGoogle Scholar
  13. Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teacher vol 35Google Scholar
  14. de Vienne DM, Giraud T, Martin OC (2007) A congruence index for testing topological similarity between trees. Bioinformatics 23(23):3119–3124CrossRefGoogle Scholar
  15. de Vienne DM, Giraud T, Martin OC (2009) In response to comment on ‘a congruence index for testing topological similarity between trees’. Bioinformatics 25(1):150–151CrossRefGoogle Scholar
  16. Demastes JW, Hafner MS (1993) Cospeciation of pocket gophers (Geomys) and their chewing lice (Geomydoecus). J Mammal 74(3):521–530CrossRefGoogle Scholar
  17. Doyon J-P, Scornavacca C, Gorbunov KY, Szöllosi GJ, Ranwez V and Berry V (2010) An Efficient Algorithm for Gene/Species Trees Parsimonious Reconciliation with Losses, Duplications and Transfers. RECOMB-CG 93–108Google Scholar
  18. Fahrenholz H (1913) Ectoparasiten und Abstammungslehre. Zoologischer Anz 41:371–374Google Scholar
  19. Felenstein J (2004) Inferring phylogenies (Vol 2) Sinauer Associates, Sunderland MAGoogle Scholar
  20. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specified tree topology. Syst Zool 20(4):406–416CrossRefGoogle Scholar
  21. Hafner MS, Nadler SA (1988) Phylogenetic trees support the coevolution of parasites and their hosts. Nature 332:258–259CrossRefGoogle Scholar
  22. Hafner MS, Page RDM (1995) Molecular phylogenies and host-parasite cospeciation: gophers and lice as a model system. Philos Trans Roy Soc London (B) 349(1327):77–83CrossRefGoogle Scholar
  23. Jackson AP (2004) Cophylogeny of the ficus microcosm. Biol Rev Camb Philos Soc 79:751–768CrossRefGoogle Scholar
  24. Kawakita A, Takimura A, Terachi T, Sota T, Kato M (2004) Cospeciation analysis of an obligate pollination mutualism: Haveglochidion trees (euphorbiaceae) and pollinating epicephala moths (gracillariidae) diversified in parallel? Evolution 58(10):2201–2214PubMedGoogle Scholar
  25. Kupczok A, von Haeseler A (2009) Comment on ‘a congruence index for testing topological similarity between trees’. Bioinformatics 25(1):147–149CrossRefGoogle Scholar
  26. Legendre P, Desdevises Y, Bazin Y (2002) A statistical test for host-parasite coevolution. Syst Biol 51(2):217–234CrossRefGoogle Scholar
  27. Libeskind-Hadas R, Charleston MA (2009) On the Computational Complexity of the Reticulate Cophylogeny Reconstruction Problem. Jour Comput Biol 16(1):105–117CrossRefGoogle Scholar
  28. Libeskind-Hadas, R, Wu Y-C, Bansal MS, Kellis M (2013) Pareto-optimal Phylogenetic Tree Reconciliation, in Proceedings of ISMB 2014Google Scholar
  29. Light JE, Hafner MS (2007) Cophylogeny and disparate rates of evolution in sympatric lineages of chewing lice on pocket gophers. Mol Phylogenet Evol 45(3):997–1013CrossRefGoogle Scholar
  30. Meier-Kolthoff JP, Auch AF, Huson DH, Göker M (2007) COPYCAT: co-phylogenetic analysis tool. Bioinformatics 23(7):898–900CrossRefGoogle Scholar
  31. Merkle D, Middendorf M, Wieseke N (2010) A parameter-adaptive dynamic programming approach for inferring cophylogenies. BMC Bioinf 11(Suppl 1):S60CrossRefGoogle Scholar
  32. Nguyen TH, Ranwez V, Berry V, Scornavacca C (2013) Support measures to estimate the reliability of evolutionary events predicted by reconciliation methods. PLoS ONE 8(10):e73667CrossRefGoogle Scholar
  33. Ovadia Y, Fielder D, Conow C, Libeskind-Hadas R (2011) The cophylogeny reconstruction problem is NP-complete. J Comput Biol Jan 18(1):59–65CrossRefGoogle Scholar
  34. Page RDM (1990) Component analysis: a valiant failure? Cladistics 6:119–136CrossRefGoogle Scholar
  35. Paterson AM, Wallis GP, Wallis LJ, Gray RD (2000) Seabird and louse coevolution: complex histories revealed by 12S rRNA sequences and reconciliation analyses. Syst Biol 49(3):383–399CrossRefGoogle Scholar
  36. Poulin R (2007). Evolutionary ecology of parasites. Edn 2. Princeton University Press, Princeton NJGoogle Scholar
  37. Poulin R, Keeney DB (2008) Host specificity under molecular and experimental scrutiny. Trends Parasitol 24:24–28CrossRefGoogle Scholar
  38. Ronquist F, Nylin S (1990) Process and pattern in the evolution of species associations. Syst Zool 39(4):323–344CrossRefGoogle Scholar
  39. Ronquist F (1995) Reconstructing the history of host-parasite associations using generalized parsimony. Cladistics 10(1):73–89CrossRefGoogle Scholar
  40. Rutschmann F (2006) Molecular dating of phylogenetic trees: a brief review of current methods that estimate divergence times. Diversity and Distributions 12(1):35–48Google Scholar
  41. Shoemaker DD, Machado CA, Molbo D, Werren JH, Windsor DM, Herre EA (2002) The distribution of Wolbachia in fig wasps: correlations with host phylogeny, ecology and population structure. Proc R Soc London (B) 269:2257–2267CrossRefGoogle Scholar
  42. Siddall ME (2005) Bracing for another decade of deception: the promise of secondary Brooks’ parsimony analysis. Cladistics 21:90–99CrossRefGoogle Scholar
  43. Sorenson MD, Balakrishnan CN, Payne RB (2004) Clade-limited colonization in brood parasitic finches (Vidua spp.). Syst Biol 53(1):140–153CrossRefGoogle Scholar
  44. Stamatakis A, Auch AF, Meier-Kolthoff JP, Göker M (2007) AxPcoords & parallel AxParafit: statistical co-phylogenetic analyses on thousands of taxa. BMC Bioinf 8:405CrossRefGoogle Scholar
  45. Thompson JN (1994) The coevolutionary process. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  46. Weiblen GD, Bush GW (2002) Speciation in fig pollinators and parasites. Mol Ecol 11:1573–1578CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Information TechnologiesUniversity of SydneySydneyAustralia
  2. 2.Department of Computer ScienceHarvey Mudd CollegeClaremountUSA

Personalised recommendations