Phylogenetic Comparative Methods for Studying Clade-Wide Convergence

  • D. Luke MahlerEmail author
  • Travis IngramEmail author


A recurring question in ecology and evolutionary biology is whether deterministic evolutionary convergence ever occurs among large sets of species, such as ecological communities or entire evolutionary radiations. Questions about large-scale convergence have featured prominently in discussions of the nature of community assembly and in debates about the relative roles of contingency versus determinism in macroevolution. Until recently, however, there have been relatively few attempts to use a phylogenetic comparative approach to answer questions about clade-level convergence. This is beginning to change with the development of new and more flexible comparative techniques for studying macroevolutionary convergence. In this chapter, we discuss ecological and evolutionary questions that have motivated interest in convergence at large spatial and phylogenetic scales. We review the statistical approaches that have been used to investigate clade-wide convergence, then describe SURFACE, a recently developed method for objectively studying convergence using macroevolutionary adaptive landscape models. We introduce new features within this framework for testing hypotheses about the biogeography of large-scale convergence and for visualizing the relative contributions of different traits to multidimensional convergence, and demonstrate these features using convergent Caribbean Anolis lizard faunas. We conclude by discussing the limitations of current approaches for studying clade-wide convergence and highlighting some directions for future research.


  1. Ackerly DD, Schwilk DW, Webb CO (2006) Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology 87:S50–S61CrossRefGoogle Scholar
  2. Alejandrino A, Puslednik L, Serb JM (2011) Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae). BMC Evol Biol 11:164. doi: 10.1186/1471-2148-11-164 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alfaro ME, Bolnick DI, Wainwright PC (2005) Evolutionary consequences of many-to-one mapping of jaw morphology to mechanics in labrid fishes. Am Nat 165:140–154. doi: 10.1086/429564 CrossRefGoogle Scholar
  4. Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G, Harmon LJ (2009) Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci 106:13410–13414. doi: 10.1073/pnas.0811087106 CrossRefPubMedGoogle Scholar
  5. Arendt J, Reznick D (2008) Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol Evol 23:26–32. doi: 10.1016/j.tree.2007.09.011 CrossRefPubMedGoogle Scholar
  6. Arnold SJ, Pfrender ME, Jones AG (2001) The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112–113:9–32CrossRefGoogle Scholar
  7. Bartoszek K, Pienaar J, Mostad P, Andersson S, Hansen TF (2012) A phylogenetic comparative method for studying multivariate adaptation. J Theor Biol 314:204–215. doi: 10.1016/j.jtbi.2012.08.005 CrossRefGoogle Scholar
  8. Beatty J (2006) Replaying life’s tape. J Philos 103:336–362CrossRefGoogle Scholar
  9. Beatty J (2008) Chance variation and evolutionary contingency: Darwin, Simpson (The Simpsons) and Gould. The Oxford Handbook of Philosophy of Biology. Oxford University Press, OxfordGoogle Scholar
  10. Beaulieu JM, Jhwueng D-C, Boettiger C, O’Meara BC (2012) Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution 66:2369–2383. doi: 10.1111/j.1558-5646.2012.01619.x CrossRefGoogle Scholar
  11. Blackledge TA, Gillespie RG (2004) Convergent evolution of behavior in an adaptive radiation of Hawaiian web-building spiders. Proc Natl Acad Sci 101:16228–16233CrossRefGoogle Scholar
  12. Blondel J (1991) Assessing convergence at the community-wide level. Trends Ecol Evol 6:271–272CrossRefGoogle Scholar
  13. Bock WJ (1980) The definition and recognition of biological adaptation. Am Zool 20:217–227CrossRefGoogle Scholar
  14. Bock WJ, Miller WD (1959) The scansorial foot of the woodpeckers, with comments on the evolution of perching and climbing feet in birds. Am Mus Novit 1931:1–45Google Scholar
  15. Bossuyt F, Milinkovitch MC (2000) Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc Natl Acad Sci 97:6585–6590CrossRefGoogle Scholar
  16. Brandley MC, Kuriyama T, Hasegawa M (2014) Snake and bird predation drive the repeated convergent evolution of correlated life history traits and phenotype in the Izu Island scincid lizard (Plestiodon latiscutatus). PLoS ONE 9:e92233. doi: 10.1371/journal.pone.0092233 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Butler MA, King AA (2004) Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am Nat 164:683–695CrossRefGoogle Scholar
  18. Chiba S (2004) Ecological and morphological patterns in communities of land snails of the genus Mandarina from the Bonin Islands. J Evol Biol 17:131–143. doi: 10.1046/j.1420-9101.2004.00639.x CrossRefPubMedGoogle Scholar
  19. Clabaut C, Bunje PME, Salzburger W, Meyer A (2007) Geometric morphometric analyses provide evidence for the adaptive character of the Tanganyikan cichlid fish radiations. Evolution 61:560–578. doi: 10.1111/j.1558-5646.2007.00045.x CrossRefPubMedGoogle Scholar
  20. Cody ML (1974) Competition and the structure of bird communities, pp 1–318Google Scholar
  21. Cody ML, Diamond JM (1975) Ecology and evolution of communities, pp 1–545Google Scholar
  22. Cody ML, Mooney HA (1978) Convergence versus nonconvergence in Mediterranean-climate ecosystems. Annu Rev Ecol Syst 9:265–321. doi: 10.1146/ CrossRefGoogle Scholar
  23. Collar DC, Schulte JA II, Losos JB (2011) Evolution of extreme body size disparity in monitor lizards (Varanus). Evolution 65:2664–2680. doi: 10.1111/j.1558-5646.2011.01335.x CrossRefGoogle Scholar
  24. Conway Morris S (2003) Life’s solution: inevitable humans in a lonely universe. pp 1–464Google Scholar
  25. Cooper WJ, Westneat MW (2009) Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches. BMC Evol Biol 9:24. doi: 10.1186/1471-2148-9-24 CrossRefPubMedPubMedCentralGoogle Scholar
  26. De Busschere C, Baert L, Van Belleghem SM, Dekoninck W, Hendrickx F (2012) Parallel phenotypic evolution in a wolf spider radiation on Galápagos. Biol J Linn Soc 106:123–136. doi: 10.1111/j.1095-8312.2011.01848.x CrossRefGoogle Scholar
  27. Eastman JM, Alfaro ME, Joyce P, Hipp AL, Harmon LJ (2011) A novel comparative method for identifying shifts in the rate of character evolution on trees. Evolution 65(12):3578–3589CrossRefGoogle Scholar
  28. Ellingson RA (2013) Convergent evolution of ecomorphological adaptations in geographically isolated Bay gobies (Teleostei: Gobionellidae) of the temperate North Pacific. Mol Phylogenet Evol. doi: 10.1016/j.ympev.2013.10.009 CrossRefPubMedGoogle Scholar
  29. Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol 23:619–630. doi: 10.1016/j.tree.2008.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Erwin DH (2006) Evolutionary contingency. Curr Biol 16:825–826CrossRefGoogle Scholar
  31. Felsenstein J (1988) Phylogenies and quantitative characters. Annu Rev Ecol Syst 19:445–471. doi: 10.1146/ CrossRefGoogle Scholar
  32. Fox BJ (1987) Species assembly and the evolution of community structure. Evol Ecol 1:201–213. doi: 10.1007/BF02067551 CrossRefGoogle Scholar
  33. Frédérich B, Sorenson L, Santini F, Slater GJ, Alfaro ME (2013) Iterative ecological radiation and convergence during the evolutionary history of damselfishes (Pomacentridae). Am Nat 181:94–113. doi: 10.1086/668599 CrossRefPubMedGoogle Scholar
  34. Garland T, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292. doi: 10.1093/sysbio/42.3.265 CrossRefGoogle Scholar
  35. Gatz AJJ (1979) Community organization in fishes as indicated by morphological features. Ecology 60:711–718CrossRefGoogle Scholar
  36. Gavrilets S, Vose A (2005) Dynamic patterns of adaptive radiation. Proc Natl Acad Sci 102:18040–18045. doi: 10.1073/pnas.0506330102 CrossRefPubMedGoogle Scholar
  37. Gillespie R (2004) Community assembly through adaptive radiation in Hawaiian spiders. Science 303:356–359. doi: 10.1126/science.1091875 CrossRefPubMedGoogle Scholar
  38. Gillespie RG (2005) The ecology and evolution of Hawaiian spider communities. Am Sci 93:122–131CrossRefGoogle Scholar
  39. Givnish TJ (1997) Adaptive radiation and molecular systematics: aims and conceptual issues. In: Molecular evolution and adaptive radiation, Cambridge University Press, New YorkGoogle Scholar
  40. Givnish TJ (1999) Adaptive radiation, dispersal, and diversification of the Hawaiian lobeliads. The Biology of Biodiversity. Springer, TokyoGoogle Scholar
  41. Givnish TJ, Millam KC, Mast AR, Paterson TB, Theim TJ, Hipp AL, Henss JM, Smith JF, Wood KR, Sytsma KJ (2009) Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). Proc Roy Soc B 276:407–416. doi: 10.1098/rspb.2008.1204 CrossRefGoogle Scholar
  42. Glor RE (2010) Phylogenetic insights on adaptive radiation. Annu Rev Ecol Evol Syst 41:251–270. doi: 10.1146/annurev.ecolsys.39.110707.173447 CrossRefGoogle Scholar
  43. Glor RE, Kolbe JJ, Powell R, Larson A, Losos JB (2003) Phylogenetic analysis of ecological and morphological diversification in Hispaniolan trunk-ground anoles (Anolis cybotes group). Evolution 57:2383–2397CrossRefGoogle Scholar
  44. Gould SJ (1989) Wonderful life: the Burgess Shale and the nature of history, pp 1–347Google Scholar
  45. Gould SJ (2002) The structure of evolutionary theory, pp 1–1464Google Scholar
  46. Gould SJ (2003) Contingency. In: Palaeobiology II. Blackwell Publishing Ltd, New JerseyGoogle Scholar
  47. Hansen TF (1997) Stabilizing selection and the comparative analysis of adaptation. Evolution 51:1341–1351CrossRefGoogle Scholar
  48. Hansen TF (2012) Adaptive landscapes and macroevolutionary dynamics. In: The adaptive landscape in evolutionary biology, Oxford University Press, OxfordCrossRefGoogle Scholar
  49. Hansen TF, Pienaar J, Orzack SH (2008) A comparative method for studying adaptation to a randomly evolving environment. Evolution 62:1965–1977. doi: 10.1111/j.1558-5646.2008.00412.x CrossRefPubMedPubMedCentralGoogle Scholar
  50. Harmon LJ, Kolbe JJ, Cheverud JM, Losos JB (2005) Convergence and the multidimensional niche. Evolution 59:409–421CrossRefGoogle Scholar
  51. Harmon LJ, Losos JB, Davies TJ, Gillespie RG, Gittleman JL, Jennings WB, Kozak KH, McPeek MA, Moreno-Roark F, Near TJ, Purvis A, Ricklefs RE, Schluter D, Schulte JA II, Seehausen O, Sidlauskas BL, Torres-Carvajal O, Weir JT, Mooers AØ (2010) Early bursts of body size and shape evolution are rare in comparative data. Evolution 64:2385–2396. doi: 10.1111/j.1558-5646.2010.01025.x CrossRefGoogle Scholar
  52. Heath TA, Holder MT, Huelsenbeck JP (2012) A Dirichlet process prior for estimating lineage-specific substitution rates. Mol Biol Evol 29(3):939–955CrossRefGoogle Scholar
  53. Hekstra DR, Leibler S (2012) Contingency and statistical laws in replicate microbial closed ecosystems. Cell 149:1164–1173. doi: 10.1016/j.cell.2012.03.040 CrossRefPubMedGoogle Scholar
  54. Huelsenbeck JP, Nielsen R, Bollback JP (2003) Stochastic mapping of morphological characters. Syst Biol 52:131–158. doi: 10.1080/10635150390192780 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ingram T, Kai Y (2014) The geography of morphological convergence in the radiations of Pacific Sebastes rockfishesGoogle Scholar
  56. Ingram T, Mahler DL (2013) SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike Information Criterion. Methods Ecol Evol 4:416–425. doi: 10.1111/2041-210X.12034 CrossRefGoogle Scholar
  57. Inkpen R, Turner D (2012) The topography of historical contingency. J Philos Hist 6:1–19. doi: 10.1163/187226312X625573 CrossRefGoogle Scholar
  58. Johnson MA, Revell LJ, Losos JB (2009) Behavioral convergence and adaptive radiation: effects of habitat use on territorial behavior in Anolis lizards. Evolution 64:1151–1159. doi: 10.1111/j.1558-5646.2009.00881.x CrossRefPubMedGoogle Scholar
  59. Karr JR, James FC (1975) Eco-morphological configurations and convergent evolution in species and communities. In: Ecology and evolution of communities. The Belknap Press of Harvard University Press, Cambridge, MAGoogle Scholar
  60. Kassen R (2009) Toward a general theory of adaptive radiation: insights from microbial experimental evolution. Ann N Y Acad Sci 1168:3–22. doi: 10.1111/j.1749-6632.2009.04574.x CrossRefPubMedGoogle Scholar
  61. Keast A (1972) Ecological opportunities and dominant families, as illustrated by the Neotropical Tyrannidae (Aves). Evol Biol 5:229–277Google Scholar
  62. Kelt DA, Brown JH, Heske EJ, Marquet PA, Morton SR, Reid JRW, Rogovin KA, Shenbrot G (1996) Community structure of desert small mammals: comparisons across four continents. Ecology 77:746–761CrossRefGoogle Scholar
  63. Kocher TD, Conroy JA, McKaye KR, Stauffer JR (1993) Similar morphologies of cichlid fish in Lakes Tanganyika and Malawi are due to convergence. Mol Phylogenet Evol 2:158–165CrossRefGoogle Scholar
  64. Kozak KH, Mendyk RW, Wiens JJ (2009) Can parallel diversification occur in sympatry? Repeated patterns of body-size evolution in coexisting clades of North American salamanders. Evolution 63:1769–1784. doi: 10.1111/j.1558-5646.2009.00680.x CrossRefGoogle Scholar
  65. Lande R (1976) Natural selection and random genetic drift in phenotypic evolution. Evolution 30:314–334CrossRefGoogle Scholar
  66. Lapiedra O, Sol D, Carranza S, Beaulieu JM (2013) Behavioural changes and the adaptive diversification of pigeons and doves. Proc Roy Soc B 280:20122893CrossRefGoogle Scholar
  67. Lawton JH (1984) Non-competitive populations, non-convergent communities, and vacant niches: The herbivores of bracken. In: Strong DRJ, Simberloff D, Abele LG, Thistle AB (eds) Ecological Communities: Conceptual Issues and the Evidence. Princeton University Press, Princeton, pp 67–100Google Scholar
  68. Lenski RE, Travisano M (1994) Dynamics of adaptation and diversification: A 10,000-generation experiment with bacterial populations. Proc Natl Acad Sci USA 91:6808–6814CrossRefGoogle Scholar
  69. Losos JB (1996) Ecological and evolutionary determinants of the species-area relation in Caribbean anoline lizards. Philos Trans Roy Soc Lond B 351:847–854CrossRefGoogle Scholar
  70. Losos JB (2011) Convergence, adaptation and constraint. Evolution 65:1827–1840. doi: 10.1111/j.1558-5646.2011.01289.x CrossRefGoogle Scholar
  71. Losos JB, Jackman TR, Larson A, de Queiroz K, Rodríguez-Schettino L (1998) Contingency and determinism in replicated adaptive radiations of island lizards. Science 279:2115–2118CrossRefGoogle Scholar
  72. Losos JB, Mahler DL (2010) Adaptive radiation: the interaction of ecological opportunity, adaptation, and speciation. In: Evolution since Darwin: The first 150 Years, vol 150. Sinauer Associates, Sunderland, MAGoogle Scholar
  73. MacLean RC (2005) Adaptive radiation in microbial microcosms. J Evol Biol 18:1376–1386. doi: 10.1111/j.1420-9101.2005.00931.x CrossRefPubMedGoogle Scholar
  74. Madsen O, Scally M, Douady CJ, Kao DJ, DeBry RW, Adkins R, Amrine HM, Stanhope MJ, de Jong WW, Springer MS (2001) Parallel adaptive radiations in two major clades of placental mammals. Nature 409:610–614. doi: 10.1038/35054544 CrossRefPubMedGoogle Scholar
  75. Mahler DL, Ingram T, Revell LJ, Losos JB (2013) Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341:292–295. doi: 10.1126/science.1232392 CrossRefGoogle Scholar
  76. Manceau M, Domingues VS, Linnen CR, Rosenblum EB, Hoekstra HE (2010) Convergence in pigmentation at multiple levels: mutations, genes and function. Philos Trans Roy Soc B: Biol Sci 365:2439–2450. doi: 10.1098/rstb.2010.0104 CrossRefGoogle Scholar
  77. Martins EP (1994) Estimating the rate of phenotypic evolution from comparative data. Am Nat 144:193–209CrossRefGoogle Scholar
  78. Melville J, Harmon LJ, Losos JB (2006) Intercontinental community convergence of ecology and morphology in desert lizards. Proc Roy Soc B 273:557–563. doi: 10.1098/rspb.2005.3328 CrossRefGoogle Scholar
  79. Miles DB, Ricklefs RE, Travis J (1987) Concordance of ecomorphological relationships in three assemblages of passerine birds. Am Nat 129:347–364CrossRefGoogle Scholar
  80. Moen DS, Wiens JJ (2009) Phylogenetic evidence for competitively driven divergence: body-size evolution in Caribbean treefrogs (Hylidae: Osteopilus). Evolution 63:195–214. doi: 10.1111/j.1558-5646.2008.00538.x CrossRefPubMedGoogle Scholar
  81. Montaña CG, Winemiller KO (2013) Evolutionary convergence in Neotropical cichlids and Nearctic centrarchids: evidence from morphology, diet, and stable isotope analysis. Biol J Linn Soc 109:146–164CrossRefGoogle Scholar
  82. Muschick M, Indermaur A, Salzburger W (2012) Convergent evolution within an adaptive radiation of cichlid fishes. Curr Biol 22:2362–2368. doi: 10.1016/j.cub.2012.10.048 CrossRefPubMedGoogle Scholar
  83. Orians GH, Paine RT (1983) Convergent evolution at the community level. In: Coevolution, Sinauer Associates, Inc., Sunderland, MAGoogle Scholar
  84. Orians GH, Solbrig OT (1977a) Convergent evolution in warm deserts. Dowden, Hutchinson & Ross, Inc., Stroudsburg, PAGoogle Scholar
  85. Orians GH, Solbrig OT (1977b) Degree of convergence of ecosystem characteristics. In: Convergent evolution in warm deserts. Dowden, Hutchinson & Ross, Inc., Stroudsburg, PAGoogle Scholar
  86. Patterson TB, Givnish TJ (2003) Geographic cohesion, chromosomal evolution, parallel adaptive radiations, and consequent floral adaptations in Calochortus (Calochortaceae): evidence from a cpDNA phylogeny. New Phytol 161:253–264. doi: 10.1046/j.1469-8137.2003.00951.x CrossRefGoogle Scholar
  87. Pearce T (2012) Convergence and parallelism in evolution: a neo-Gouldian account. Br J Philos Sci 63:429–448. doi: 10.1093/bjps/axr046 CrossRefGoogle Scholar
  88. Pianka ER (1974) Evolutionary ecology, pp 1–397Google Scholar
  89. Pie MR, Weitz JS (2005) A null model of morphospace occupation. Am Nat 166:E1–E13. doi: 10.1086/430727 CrossRefPubMedGoogle Scholar
  90. Powell R (2009) Contingency and convergence in macroevolution: a reply to John Beatty. J Philos 106:390–403CrossRefGoogle Scholar
  91. Powell R (2012) Convergent evolution and the limits of natural selection. Eur J Philos Sci 2:355–373. doi: 10.1007/s13194-012-0047-9 CrossRefGoogle Scholar
  92. Price T (1997) Correlated evolution and independent contrasts. Philos Trans Roy Soc Lond B 352:519–529CrossRefGoogle Scholar
  93. Price T, Lovette IJ, Bermingham E, Gibbs HL, Richman AD (2000) The imprint of history on communities of North American and Asian warblers. Am Nat 156:354–367. doi: 10.1086/303397 CrossRefPubMedGoogle Scholar
  94. Rainey PB, Travisano M (1998) Adaptive radiation in a heterogeneous environment. Nature 394:69–72CrossRefGoogle Scholar
  95. Revell LJ (2009) Size-correction and principal components for interspecific comparative studies. Evolution 63:3258–3268. doi: 10.1111/j.1558-5646.2009.00804.x CrossRefGoogle Scholar
  96. Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3(2):217–223CrossRefGoogle Scholar
  97. Revell LJ, Mahler DL, Peres-Neto PR, Redelings BD (2012) A new phylogenetic method for identifying exceptional phenotypic diversification. Evolution 66:135–146. doi: 10.5061/dryad.vj310 CrossRefGoogle Scholar
  98. Ricklefs RE, Miles DB (1994) Ecological and evolutionary inferences from morphology: an ecological perspective. University of Chicago Press, ChicagoGoogle Scholar
  99. Ricklefs RE, Schluter D (1993) Species diversity in ecological communities: historical and geographical perspectives, pp 1–414Google Scholar
  100. Ricklefs RE, Travis J (1980) A morphological approach to the study of avian community organization. Auk 97:321–338Google Scholar
  101. Rüber L, Verheyen E, Meyer A (1999) Replicated evolution of trophic specializations in an endemic cichlid fish lineage from Lake Tanganyika. Proc Natl Acad Sci 96:10230–10235CrossRefGoogle Scholar
  102. Ruedi M, Mayer F (2001) Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Mol Phylogenet Evol 21:436–448. doi: 10.1006/mpev.2001.1017 CrossRefPubMedGoogle Scholar
  103. Sallan LC, Friedman M (2012) Heads or tails: staged diversification in vertebrate evolutionary radiations. Proc Roy Soc B: Biol Sci 279:2025–2032. doi: 10.1098/rspb.2011.2454 CrossRefGoogle Scholar
  104. Samuels CL, Drake JA (1997) Divergent perspectives on community convergence. Trends Ecol Evol 12:427–432CrossRefGoogle Scholar
  105. Saxer G, Doebeli M, Travisano M (2010) The repeatability of adaptive radiation during long-term experimental evolution of Escherichia coli in a multiple nutrient environment. PLoS ONE 5:e14184. doi: 10.1371/journal.pone.0014184 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Scheffer M, van Nes EH (2006) Self-organized similarity, the evolutionary emergence of groups of similar species. Proc Natl Acad Sci 103:6230–6235. doi: 10.1073/pnas.0508024103 CrossRefPubMedGoogle Scholar
  107. Schluter D (1986) Tests for similarity and convergence of finch communities. Ecology 67:1073–1085CrossRefGoogle Scholar
  108. Schluter D (1990) Species-for-species matching. Am Nat 136:560–568. doi: 10.1086/285135 CrossRefGoogle Scholar
  109. Schluter D (2000) The ecology of adaptive radiation, pp 1–288Google Scholar
  110. Schluter D, McPhail JD (1993) Character displacement and replicate adaptive radiation. Trends Ecol Evol 8:197–200CrossRefGoogle Scholar
  111. Segar ST, Pereira RAS, Compton SG, Cook JM (2013) Convergent structure of multitrophic communities over three continents. Ecol Lett. doi: 10.1111/ele.12183 CrossRefPubMedGoogle Scholar
  112. Simpson GG (1944) Tempo and mode in evolution, pp 1–237Google Scholar
  113. Simpson GG (1950) Evolutionary determinism and the fossil record. Sci Mon 71:262–267Google Scholar
  114. Springer MS, Kirsch JAW, Chase JA (1997) The chronicle of marsupial evolution. In: Molecular evolution and adaptive radiation. Cambridge University Press, CambridgeGoogle Scholar
  115. Stayton CT (2008) Is convergence surprising? An examination of the frequency of convergence in simulated datasets. J Theor Biol 252:1–14. doi: 10.1016/j.jtbi.2008.01.008 CrossRefPubMedGoogle Scholar
  116. Stiassny MLJ, Meyer A (1999) Cichlids of the rift lakes. Sci Am 280:64–69. doi: 10.1038/scientificamerican0299-64 CrossRefGoogle Scholar
  117. Streelman JT, Danley PD (2003) The stages of vertebrate evolutionary radiation. Trends Ecol Evol 18:126–131CrossRefGoogle Scholar
  118. Strong DRJ, Simberloff D, Abele LG, Thistle AB (1984) Ecological communities: conceptual issues and the evidence, pp 1–613Google Scholar
  119. Svensson EI, Calsbeek R (2012) The past, the present, and the future of the adaptive landscape. In: Svensson EI, Calsbeek R (eds) The adaptive landscape in evolutionary biology. Oxford University Press, Oxford, pp 299–308Google Scholar
  120. Thomas GH, Freckleton RP (2012) MOTMOT: models of trait macroevolution on trees. Methods Ecol Evol 3:145–151. doi: 10.1111/j.2041-210X.2011.00132.x CrossRefGoogle Scholar
  121. Tyerman J, Havard N, Saxer G, Travisano M, Doebeli M (2005) Unparallel diversification in bacterial microcosms. Proc Roy Soc B 272:1393–1398. doi: 10.1098/rspb.2005.3068 CrossRefGoogle Scholar
  122. Uhlenbeck GE, Ornstein LS (1930) On the theory of the Brownian motion. Phys Rev 36:823–841CrossRefGoogle Scholar
  123. Venditti C, Meade A, Pagel M (2011) Multiple routes to mammalian diversity. Nature 479:393–396. doi: 10.1038/nature10516 CrossRefGoogle Scholar
  124. Wagenaar DA, Adami C (2004) Influence of chance, history, and adaptation on digital evolution. Artif Life 10:181–190. doi: 10.1162/106454604773563603 CrossRefPubMedGoogle Scholar
  125. Wiens JA (1991) Ecomorphological comparisons of the shrub-desert avifaunas of Australia and North America. Oikos 60:55–63CrossRefGoogle Scholar
  126. Wiens JJ, Brandley MC, Reeder TW (2006) Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution 60:123–141PubMedGoogle Scholar
  127. Winchester JM, Boyer DM, St Clair EM, Gosselin-Ildari AD, Cooke SB, Ledogar JA (2014) Dental topography of platyrrhines and prosimians: convergence and contrasts. Am J Phys Anthropol 153:29–44. doi: 10.1002/ajpa.22398 CrossRefPubMedGoogle Scholar
  128. Yedid G, Bell G (2002) Macroevolution simulated with autonomously replicating computer programs. Nature 420:810–812. doi: 10.1038/nature01151 CrossRefPubMedGoogle Scholar
  129. Yedid G, Ofria CA, Lenski RE (2008) Historical and contingent factors affect re-evolution of a complex feature lost during mass extinction in communities of digital organisms. J Evol Biol 21:1335–1357. doi: 10.1111/j.1420-9101.2008.01564.x CrossRefPubMedGoogle Scholar
  130. Young KA, Snoeks J, Seehausen O (2009) Morphological diversity and the roles of contingency, chance and determinism in African cichlid radiations. PLoS ONE 4:e4740. doi: 10.1371/journal.pone.0004740 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Center for Population BiologyUniversity of California DavisDavisUSA
  2. 2.Department of ZoologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations