Advertisement

Modelling Stabilizing Selection: The Attraction of Ornstein–Uhlenbeck Models

  • Brian C. O’MearaEmail author
  • Jeremy M. Beaulieu

Abstract

Ornstein–Uhlenbeck models are a generalization of Brownian motion models that allow trait values to evolve to follow optima. They have become broadly popular in evolutionary studies due to their ability to better fit empirical data as well as for the biological conclusions which can be drawn based on their parameter estimates, especially optimum trait values. We include a survey of available software implementing these models in phylogenetics as well as cautions regarding the use of this software.

Notes

Acknowledgments

This chapter benefited greatly from comments by László Zsolt Garamszegi and an anonymous reviewer and discussions with Thomas Hansen, Marguerite Butler, Aaron King, and Tony Jhwueng.

References

  1. Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  2. Barndorff-Nielsen OE, Shephard N (2001) Non-gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J Roy Stat Soc Ser B (Stat Methodol) 63(2):167–241. doi: 10.2307/2680596 CrossRefGoogle Scholar
  3. Bartoszek K, Pienaar J, Mostad P, Andersson S, Hansen TF (2012) A phylogenetic comparative method for studying multivariate adaptation. J Theor Biol 314:204–215CrossRefGoogle Scholar
  4. Beaulieu JM, Jhwueng D-C, Boettiger C, O’Meara BC (2012) Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution 66(8):2369–2383CrossRefGoogle Scholar
  5. Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179(4):975–986CrossRefGoogle Scholar
  6. Beaulieu JM, O’Meara BC, Donoghue MJ (2013) Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. Syst Biol 62:725–737CrossRefGoogle Scholar
  7. Beaulieu JM, Smith SA, Leitch IJ (2010) On the tempo of genome size evolution in angiosperms. J Bot. doi:  10.1155/2010/989152 CrossRefGoogle Scholar
  8. Bennett MD, Leitch IJ (2010) Plant DNA C-values database (release 6.0, Dec. 2012)Google Scholar
  9. Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57(4):717–745CrossRefGoogle Scholar
  10. Burnham KP, Anderson DR (2004) Multimodel inference—understanding AIC and BIC in model selection. Sociol Methods Res 33(2):261–304CrossRefGoogle Scholar
  11. Butler MA, King AA (2004) Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am Nat 164(6):683–695CrossRefGoogle Scholar
  12. Doob JL (1942) The Brownian movement and stochastic equations. Ann Math 43(2):351–369CrossRefGoogle Scholar
  13. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125(1):1–15CrossRefGoogle Scholar
  14. Felsenstein J (1988) Phylogenies and quantitative characters. Annu Rev Ecol Syst 19:445–471CrossRefGoogle Scholar
  15. Hansen TF (1997) Stabilizing selection and the comparative analysis of adaptation. Evolution 51(5):1341–1351CrossRefGoogle Scholar
  16. Hansen TF, Pienaar J, Orzack SH (2008) A comparative method for studying adaptation to a randomly evolving environment. Evolution 62(8):1965–1977PubMedPubMedCentralGoogle Scholar
  17. Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W (2008) GEIGER: investigating evolutionary radiations. Bioinformatics 24(1):129–131CrossRefGoogle Scholar
  18. Ho LST, Ané C (2014) A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst Biol 63(3): 397–408Google Scholar
  19. Huelsenbeck JP, Nielsen R, Bollback JP (2003) Stochastic mapping of morphological characters. Syst Biol 52(2):131–158. doi: 10.1080/10635150390192780 CrossRefPubMedGoogle Scholar
  20. Ingram T, Mahler DL (2013) SURFACE: detecting convergent evolution from comparative data by fitting Ornstein–Uhlenbeck models with stepwise Akaike Information Criterion. Methods Ecol Evol 4(5):416–425CrossRefGoogle Scholar
  21. Jackman T, Losos JB, Larson A, de Queiroz K (1997) Phylogenetic studies of convergent adaptive radiations in Caribbean Anolis lizards. In: Molecular evolution and adaptive radiation. pp 535–557Google Scholar
  22. Losos JB (1992) The evolution of convergent structure in Caribbean Anolis communities. Syst Biol 41(4):403–420CrossRefGoogle Scholar
  23. Mahler DL, Ingram T, Revell LJ, Losos JB (2013) Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341(6143):292–295CrossRefGoogle Scholar
  24. Martins EP (2004) COMPARE, version 4.6 b. Computer programs for the statistical analysis of comparative data. Distributed by the author at http://compare.bio.indiana.edu/, Department of Biology, Indiana University, Bloomington, IN
  25. Oliver MJ, Petrov D, Ackerly D, Falkowski P, Schofield OM (2007) The mode and tempo of genome size evolution in eukaryotes. Genome Res 17(5):594–601CrossRefGoogle Scholar
  26. Pagel M (1997) Inferring evolutionary processes from phylogenies. Zoolog Scr 26(4):331–348CrossRefGoogle Scholar
  27. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401(6756):877–884CrossRefGoogle Scholar
  28. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289CrossRefGoogle Scholar
  29. Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3(2):217–223CrossRefGoogle Scholar
  30. Revell LJ (2013) A comment on the use of stochastic character maps to estimate evolutionary rate variation in a continuously valued trait. Syst Biol 62(2):339–345CrossRefGoogle Scholar
  31. Uhlenbeck GE, Ornstein LS (1930) On the theory of the Brownian motion. Phys Rev 36(5):823–841CrossRefGoogle Scholar
  32. Verdú M (2002) Age at maturity and diversification in woody angiosperms. Evolution 56(7):1352–1361. doi: 10.1111/j.0014-3820.2002.tb01449.x CrossRefPubMedGoogle Scholar
  33. Whittall JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447(7145):706–709CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyKnoxvilleUSA
  2. 2.National Institute for Biological and Mathematical SynthesisUniversity of TennesseeKnoxvilleUSA

Personalised recommendations