Advertisement

Abstract

Simulating phylogenetic data is a powerful tool for evolutionists, but this can be a complicated task. This chapter gives an overview on the methods to simulate species traits, particularly on a phylogeny. We show that building from three fundamental models (Brownian motion (BM), Ornstein–Uhlenbeck (OU), and Markov chains (MC)), many biologically relevant scenarios can be simulated. We also review briefly the simulation of phylogenies and the available software for phylogenetic data simulation (PDS). The online materials give several examples, including some complex cases, using R.

Notes

Acknowledgments

I am grateful to László Zsolt Garamszegi for inviting me to write this chapter. Many thanks to Matthew Pennell and an anonymous reviewer for their positive comments.

References

  1. Brown RP, Yang Z (2011) Rate variation and estimation of divergence times using strict and relaxed clocks. BMC Evol Biol 11:271CrossRefGoogle Scholar
  2. Etienne RS, Rosindell J (2012) Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification. Syst Biol 61:204–213CrossRefGoogle Scholar
  3. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15CrossRefGoogle Scholar
  4. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland, MAGoogle Scholar
  5. FitzJohn RG (2012) Diversitree: comparative phylogenetic analyses of diversification in R. Meth Ecol Evol 3:1084–1092CrossRefGoogle Scholar
  6. FitzJohn RG, Maddison WP, Otto SP (2009) Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst Biol 58:595–611CrossRefGoogle Scholar
  7. Gillespie DT (1996) Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Phys Rev E 54:2084–2091CrossRefGoogle Scholar
  8. Hallinan N (2012) The generalized time variable reconstructed birth–death process. J Theor Biol 300:265–276CrossRefGoogle Scholar
  9. Highton R, Larson A (1979) The genetic relationships of the salamanders of the genus Plethodon. Syst Zool 28:579–599CrossRefGoogle Scholar
  10. Kendall DG (1948) On the generalized “birth-and-death” process. Ann Math Stat 19:1–15CrossRefGoogle Scholar
  11. Kozak KH, Mendyk RW, Wiens JJ (2009) Can parallel diversification occur in sympatry? Repeated patterns of body-size evolution in coexisting clades of North American salamanders. Evolution 63:1769–1784CrossRefGoogle Scholar
  12. Maddison WP, Midford PE, Otto SP (2007) Estimating a binary character’s effect on speciation and extinction. Syst Biol 56:701–710CrossRefGoogle Scholar
  13. Massey WA, Whitt W (1998) Uniform acceleration expansions for Markov chains with time-varying rates. Ann Appl Prob 8:1130–1155CrossRefGoogle Scholar
  14. Molini A, Talkner P, Katul GG, Porporato A (2011) First passage time statistics of Brownian motion with purely time dependent drift and diffusion. Phys A 390:1841–1852CrossRefGoogle Scholar
  15. Mooers AØ, Heard SB (1997) Inferring evolutionary process from phylogenetic tree shape. Quart Rev Biol 72:31–54CrossRefGoogle Scholar
  16. Page RDM (1991) Random dendrograms and null hypotheses in cladistic biogeography. Syst Zool 40:54–62CrossRefGoogle Scholar
  17. Paradis E (2005) Statistical analysis of diversification with species traits. Evolution 59:1–12CrossRefGoogle Scholar
  18. Paradis E (2011) Time-dependent speciation and extinction from phylogenies: a least squares approach. Evolution 65:661–672CrossRefGoogle Scholar
  19. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290CrossRefGoogle Scholar
  20. Siltaneva J, Mäkinen E (2002) A comparison of random binary tree generators. Comput J 45:653–660CrossRefGoogle Scholar
  21. Stadler T (2009) On incomplete sampling under birth-death models and connections to the sampling-based coalescent. J Theor Biol 261:58–66CrossRefGoogle Scholar
  22. Stadler T (2011) Simulating trees with a fixed number of extant species. Syst Biol 60:676–684CrossRefGoogle Scholar
  23. Sukumaran J, Holder MT (2010) DendroPy: a Python library for phylogenetic computing. Bioinformatics 26:1569–1571CrossRefGoogle Scholar
  24. Vos RA, Caravas J, Hartmann K, Jensen MA, Miller C (2011) BIO: Phylo-phyloinformatic analysis using perl. BMC Bioinformatics 12:63CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institut de Recherche pour le DéveloppementMontpellierFrance

Personalised recommendations