Advertisement

Multimodel-Inference in Comparative Analyses

  • László Zsolt GaramszegiEmail author
  • Roger Mundry

Abstract

Multimodel inference refers to the task of making a generalization from several statistical models that correspond to different biological hypotheses and that vary in the degree of how well they fit the data at hand. Several approaches have been developed for such purpose, and these are widely used, mostly for intraspecific data, i.e., in a non-phylogenetic framework, to draw inference from models that consider different predictor variables in different combinations. Adding the phylogenetic component, in theory, calls for a more extended exploitation of these techniques as several hypotheses about the phylogenetic history of species and about the mode of evolution should also be considered, all of which can be flexibly incorporated and combined with different statistical models. Here, we highlight some biological problems that inherently imply multimodel approaches and show how these problems can be tackled in the phylogenetic generalized least squares (PGLS) modeling framework based on information-theoretic approaches (e.g., by using Akaike’s information criterion, AIC) or maximum likelihood. We present a conceptual framework of model selection for phylogenetic comparative analyses, where the goal is to generalize across models that involve different combinations of predictors, phylogenetic hypotheses, parameters describing the mode of evolution, and error structures. Although this overview suggests that a model selection strategy may be useful in several situations, we note that the performance of the approach in the phylogenetic context awaits further evaluation in simulation studies.

References

  1. Alfaro ME, Huelsenbeck JP (2006) Comparative performance of Bayesian and AIC-based measures of phylogenetic model uncertainty. Syst Biol 55(1):89–96. doi: 10.1080/10635150500433565 CrossRefGoogle Scholar
  2. Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G, Harmon LJ (2009) Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci. doi: 10.1073/pnas.0811087106 CrossRefPubMedGoogle Scholar
  3. Arima S, Tardella L (2012) Improved harmonic mean estimator for phylogenetic model evidence. J Comput Biol 19(4):418–438. doi: 10.1089/cmb.2010.0139 CrossRefGoogle Scholar
  4. Arnold C, Matthews LJ, Nunn CL (2010) The 10kTrees website: a new online resource for primate hylogeny. Evol Anthropol 19:114–118CrossRefGoogle Scholar
  5. Bennett PM, Harvey PH (1985) Brain size, development and metabolism in birds and mammals. J Zool 207:491–509CrossRefGoogle Scholar
  6. Blomberg S, Garland TJ, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more laible. Evolution 57:717–745CrossRefGoogle Scholar
  7. Bolker B (2007) Ecological models and data in R. Princeton University Press, Princeton and OxfordGoogle Scholar
  8. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  9. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65(1):23–35CrossRefGoogle Scholar
  10. Butler MA, King AA (2004) Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am Nat 164(6):683–695. doi: 10.1086/426002 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chamberlin TC (1890) The method of multiple working hypotheses. Science 15:92–96Google Scholar
  12. Cheverud JM, Dow MM, Leutenegger W (1985) The quantitative assessment of phylogenetic constraints in comparative analyses: sexual dimorphism of body weight among primates. Evolution 39:1335–1351CrossRefGoogle Scholar
  13. Claeskens C, Hjort NL (2008) Model selection and model averaging. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. Cohen J (1994) The earth is round (p < .05). Am Psychol 49(12):997–1003CrossRefGoogle Scholar
  15. Collar DC, O’Meara BC, Wainwright PC, Near TJ (2009) Piscivory limits diversification of feeding morphology in centrarchid fishes. Evolution 63:1557–1573CrossRefGoogle Scholar
  16. Collar DC, Schulte JA, Losos JB (2011) Evolution of extreme body size disparity in monitor lizards (Varanus). Evolution 65(9):2664–2680. doi: 10.1111/j.1558-5646.2011.01335.x CrossRefPubMedGoogle Scholar
  17. Congdon P (2003) Applied bayesian modelling. Wiley, ChichesterCrossRefGoogle Scholar
  18. Congdon P (2006) Bayesian statistical modelling, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  19. de Villemereuil P, Wells JA, Edwards RD, Blomberg SP (2012) Bayesian models for comparative analysis integrating phylogenetic uncertainty. BMC Evol Biol 12. doi: 10.1186/1471-2148-12-102 CrossRefGoogle Scholar
  20. Depraz A, Cordellier M, Hausser J, Pfenninger M (2008) Postglacial recolonization at a snail’s pace (Trochulus villosus): confronting competing refugia hypotheses using model selection. Mol Ecol 17(10):2449–2462. doi: 10.1111/j.1365-294X.2008.03760.x CrossRefPubMedGoogle Scholar
  21. Eklof A, Helmus MR, Moore M, Allesina S (2012) Relevance of evolutionary history for food web structure. Proc Roy Soc B-Biol Sci 279(1733):1588–1596. doi: 10.1098/rspb.2011.2149 CrossRefGoogle Scholar
  22. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15CrossRefGoogle Scholar
  23. Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726CrossRefGoogle Scholar
  24. Gamerman D, Lopes HF (2006) Markov chain Monte Carlo: stochastic simulation for Bayesian inference. CRC Press, Boca Raton, FLGoogle Scholar
  25. Garamszegi LZ (2011) Information-theoretic approaches to statistical analysis in behavioural ecology: an introduction. Behav Ecol Sociobiol 65:1–11. doi: 10.1007/s00265-010-1028-7 CrossRefGoogle Scholar
  26. Garamszegi LZ, Møller AP (2007) Prevalence of avian influenza and host ecology. Proc R Soc B 274:2003–2012CrossRefGoogle Scholar
  27. Garamszegi LZ, Møller AP (2012) Untested assumptions about within-species sample size and missing data in interspecific studies. Behav Ecol Sociobiol 66:1363–1373CrossRefGoogle Scholar
  28. Garamszegi LZ, Møller AP, Erritzøe J (2002) Coevolving avian eye size and brain size in relation to prey capture and nocturnality. Proc R Soc B 269:961–967CrossRefGoogle Scholar
  29. Goldberg EE, Igic B (2008) On phylogenetic tests of irreversible evolution. Evolution 62(11):2727–2741. doi: 10.1111/j.1558-5646.2008.00505.x CrossRefPubMedGoogle Scholar
  30. Hadfield JD, Nakagawa S (2010) General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J Evol Biol 23:494–508CrossRefGoogle Scholar
  31. Hansen TF (1997) Stabilizing selection and the comparative analysis of adaptation. Evolution 51:1341–1351CrossRefGoogle Scholar
  32. Hansen TF, Bartoszek K (2012) Interpreting the evolutionary regression: the interplay between observational and biological errors in phylogenetic comparative studies. Syst Biol 61:413–425CrossRefGoogle Scholar
  33. Harmon LJ, Losos JB, Jonathan Davies T, Gillespie RG, Gittleman JL, Bryan Jennings W, Kozak KH, McPeek MA, Moreno-Roark F, Near TJ, Purvis A, Ricklefs RE, Schluter D, Schulte Ii JA, Seehausen O, Sidlauskas BL, Torres-Carvajal O, Weir JT, Mooers AØ (2010) Early bursts of body size and shape evolution are rare in comparative data. Evolution 64(8):2385–2396. doi: 10.1111/j.1558-5646.2010.01025.x CrossRefGoogle Scholar
  34. Hegyi G, Garamszegi LZ (2011) Using information theory as a substitute for stepwise regression in ecology and behavior. Behav Ecol Sociobiol 65:69–76. doi: 10.1007/s00265-010-1036-7 CrossRefGoogle Scholar
  35. Hunt G (2006) Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32(4):578–601. doi: 10.1666/05070.1 CrossRefGoogle Scholar
  36. Hutcheon JM, Kirsch JW, Garland TJ (2002) A comparative analysis of brain size in relation to foraging ecology and phylogeny in the chiroptera. Brain Behav Evol 60:165–180CrossRefGoogle Scholar
  37. Ingram T, Mahler DL (2013) SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike information criterion. Methods Ecol Evol 4(5):416–425. doi: 10.1111/2041-210x.12034 CrossRefGoogle Scholar
  38. Ives AR, Midford PE, Garland T (2007) Within-species variation and measurement error in phylogenetic comparative methods. Syst Biol 56(2):252–270CrossRefGoogle Scholar
  39. Iwaniuk AN, Dean KM, Nelson JE (2004) Interspecific allometry of the brain and brain regions in parrots (Psittaciformes): comparisons with other birds and primates. Brain Behav Evol 30:40–59Google Scholar
  40. Jhwueng D-C (2013) Assessing the goodness of fit of phylogenetic comparative methods: a meta-analysis and simulation study. PLoS ONE 8(6):e67001. doi: 10.1371/journal.pone.0067001 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19(2):101–108CrossRefGoogle Scholar
  42. Konishi S, Kitagawa G (2008) Information criteria and statistical modeling. Springer, New YorkCrossRefGoogle Scholar
  43. Kutsukake N, Innan H (2013) Simulation-based likelihood approach for evolutionary models of phenotypic traits on phylogeny. Evolution 67(2):355–367CrossRefGoogle Scholar
  44. Lajeunesse MJ (2009) Meta-analysis and the comparative phylogenetic method. Am Nat 174(3):369–381. doi: 10.1086/603628 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Legendre P, Lapointe FJ, Casgrain P (1994) Modeling brain evolution from behavior: a permutational regression approach. Evolution 48(5):1487–1499. doi: 10.2307/2410243 CrossRefPubMedGoogle Scholar
  46. Link WA, Barker RJ (2006) Model weights and the foundations of multimodel inference. Ecology 87:2626–2635CrossRefGoogle Scholar
  47. Lynch M (1991) Methods for the analysis of comparative data in evolutionary biology. Evolution 45(5):1065–1080CrossRefGoogle Scholar
  48. Martins EP (1996) Conducting phylogenetic comparative analyses when phylogeny is not known. Evolution 50:12–22CrossRefGoogle Scholar
  49. Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667CrossRefGoogle Scholar
  50. Massart P (ed) (2007) Concentration inequalities and model selection: ecole d’eté de probabilités de Saint-Flour XXXIII - 2003. Springer, BerlinGoogle Scholar
  51. Mundry R (2011) Issues in information theory-based statistical inference–a commentary from a frequentist’s perspective. Behav Ecol Sociobiol 65(1):57–68CrossRefGoogle Scholar
  52. Mundry R, Nunn CL (2008) Stepwise model fitting and statistical inference: turning noise into signal pollution. Am Nat 173:119–123CrossRefGoogle Scholar
  53. Nakagawa S, Hauber ME (2011) Great challenges with few subjects: Statistical strategies for neuroscientists. Neurosci Biobehav Rev 35(3):462–473CrossRefGoogle Scholar
  54. O’Meara BC, Ané C, Sanderson MJ, Wainwright PC (2006) Testing for different rates of continuous trait evolution using likelihood. Evolution 60(5):922–933. doi: 10.1111/j.0014-3820.2006.tb01171.x CrossRefGoogle Scholar
  55. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884CrossRefGoogle Scholar
  56. Pagel M, Meade A, Barker D (2004) Bayesian estimation of ancestral character states on phylogenies. Syst Biol 53(5):673–684CrossRefGoogle Scholar
  57. Pagel M, Meade A (2006) Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am Nat 167(6):808–825PubMedGoogle Scholar
  58. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53(5):793–808. doi: 10.1080/10635150490522304 CrossRefPubMedGoogle Scholar
  59. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.orgS
  60. Rabosky DL (2006) Likelihood methods for detecting temporal shifts in diversification rates. Evolution 60(6):1152–1164CrossRefGoogle Scholar
  61. Ripplinger J, Sullivan J (2008) Does choice in model selection affect maximum likelihood analysis? Syst Biol 57(1):76–85. doi: 10.1080/10635150801898920 CrossRefPubMedGoogle Scholar
  62. Scales JA, King AA, Butler MA (2009) Running for your life or running for your dinner: what drives fiber-type evolution in lizard locomotor muscles? Am Nat 173:543–553CrossRefGoogle Scholar
  63. Schmidt D, Makalic E (2011) The behaviour of the Akaike information criterion when applied to non-nested sequences of models. In: Li J (ed) AI 2010: advances in artificial intelligence, vol 6464. Lecture Notes in Computer Science. Springer, Heidelberg, pp 223–232. doi:10.1007/978-3-642-17432-2_23 CrossRefGoogle Scholar
  64. Stephens PA, Buskirk SW, Hayward GD, Del Rio CM (2005) Information theory and hypothesis testing: a call for pluralism. J Appl Ecol 42(1):4–12CrossRefGoogle Scholar
  65. Symonds MRE, Moussalli A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav Ecol Sociobiol 65(1):13–21CrossRefGoogle Scholar
  66. Terribile LC, Olalla-Tarraga MA, Diniz JAF, Rodriguez MA (2009) Ecological and evolutionary components of body size: geographic variation of venomous snakes at the global scale. Biol J Linn Soc 98(1):94–109CrossRefGoogle Scholar
  67. Thomas GH, Freckleton RP, Székely T (2006) Comparative analyses of the influence of developmental mode on phenotypic diversification rates in shorebirds. Proc Roy Soc B-Biol Sci 273(1594):1619–1624CrossRefGoogle Scholar
  68. von Hardenberg A, Gonzalez-Voyer A (2013) Disentangling evolutionary cause-effect relationships with phylogenetic confirmatory path analysis. Evolution 67(2):378–387. doi: 10.1111/j.1558-5646.2012.01790.x CrossRefGoogle Scholar
  69. Whitmee S, Orme CDL (2013) Predicting dispersal distance in mammals: a trait-based approach. J Anim Ecol 82(1):211–221. doi: 10.1111/j.1365-2656.2012.02030.x CrossRefPubMedGoogle Scholar
  70. Whittingham MJ, Stephens PA, Bradbury RB, Freckleton RP (2006) Why do we still use stepwise modelling in ecology and behaviour? J Anim Ecol 75:1182–1189CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Evolutionary EcologyEstación Biológica de Doñana-CSICSevilleSpain
  2. 2.Max Planck Institute for Evolutionary AnthropologyLeipzigGermany

Personalised recommendations