Produktionsplanung und –steuerung pp 89-107 | Cite as
Das mehrstufige kapazitierte Losgrößenproblem
Chapter
First Online:
- 17k Downloads
Zusammenfassung
Die Losgrößenplanung spielt eine zentrale Rolle in der taktischen und operativen Planung von Produktions- und Distributionsprozessen. So ist eine effiziente Produktions- und Materialbedarfsplanung, eine effizientes Lagermanagement oder eine effizienten Distributionsplanung ohne die explizite Berücksichtigung und Bestimmung der Losgröße nicht möglich.
Preview
Unable to display preview. Download preview PDF.
Literaturverzeichnis
- Akartnnali, K., und A. J. Miller (2009). A henristic approach for big bucket multi-level production palnning problems. European Journal 0/ Operational Research 193, 396–411.CrossRefGoogle Scholar
- Ahnada-Lobo, B., M. A. Carravilla und J. F. Oliveira (2008). A note on "The capacitated lotsizing and scheduling problem with sequence-dependent setup costs and setup times' '. Computers & Operntions Research 95(4), 1374–1376.Google Scholar
- Ahneder, C. (2010). A Hybrid Optimization Approach for Multi-Level Capacitated LotSizmg Problems. European Journal of Opemtional Research 200, 59!Hi06.Google Scholar
- Ahneder, C., D. Klabjan, R. Traxler und B. Ahnada-Lobo (2015). Lead Time Considerations far the Multi-Level Capacitated Lot-sizing Problem. European Journal 0/ Operational Research 241, 727–738.Google Scholar
- Barbarosoglu, G., und L. Özdamar (2000, August). Analysis of solution space-dependent performance of simulated annealing: the case of the multi-level capacitated lot sizing problem. Computers & Qpemtions Research 27(9), 895–903.Google Scholar
- Belvaux, G., und A. Wolsey (2000). bc-prod: A Specialized Brauch-and-Cut System for Lot-Sizing Problems. 46(5), 724–738.Google Scholar
- Belvaux, G., und L. A. Wolsey (2001). Modelling practical lot-sizing problems as mizedinteger programs. Management Seience 47(7), 99:!-1007.Google Scholar
- Berretta, R., P. M. Franca und V. A. Armentano (2005). Metaheuristic approaches for the multilevel resource-constraint lot-sizing problem with setup and lead times. Asia Paeifie Journal of Operational Research 22(2), 261–286.Google Scholar
- Billington, P. J., J. O. MeClain und L. O. Thomas (1983). Mathematical programming approach to capacity-constrained {MRP} systems: Review, formulation aud problem reduction. Management Seience 3(1O), 1126–1141.Google Scholar
- Bitrao, G. R., und H. H. Yanasse (1982). Computational complexity of the capacitated lot size problem. 28(10), 1174–1186.Google Scholar
- Buschkühl, L., F. Sahling, S. Helber und H. Tempe1meier (2010). Dynamie eapacitated lotsizing problems: A classification and review of solution approaches. OR Spectrum 92 ( 2 ) , 231–261.Google Scholar
- Clark, A. R., und V. A. Armentano (1995). The application of valid inequalities to the multi-stage lot-sizing problem. 22 (7), 66!Hi80.Google Scholar
- Dorigo, M., und L. M. Gambardella (1997). Ant Colony System: A Cooperative Learnin Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation 1 (1).Google Scholar
- Glover, F. (1986). Fnture paths for integer programming and links to artificial intelligence. Computers & Operntions Research 19(5), 533–549.Google Scholar
- Gupta, D., und T. Magnusson (2005). The capacitated lot-sizmg and schedu1ing problem with sequence-dependent setup C05tS and setup times. Computers & Operations Rese arch 32, 727–747.CrossRefGoogle Scholar
- Haase, K. (1994). Lotsizing and Scheduling for Produetion Planning. Springer Berlin.CrossRefGoogle Scholar
- H……, K. (1996). Capa.citated lot-sizing with sequence dependent setup costs. OR Spektrum 18, 51–59.Google Scholar
- Harris, F. W. (1990). How many parts to malre at once. Operations Research 38, 947–950 (reprinted from Fa.ctory – The Magazine.CrossRefGoogle Scholar
- Helber, S. (1995). Lot sizing in capa.citated production planning and control systems. OR Spektrum 17(1), & -18.Google Scholar
- Helber, S., und F. Sahling (2010). A fix-and-optimize approach for the multi-level capa.citated lot-sizing problem. International Journal 0/ Production Economics 123, 247–256.CrossRefGoogle Scholar
- Hung, Y., und K. Chien (2000). A multi-class multi-level capa.citated lot sizing model. Journal 0/ the Operational Research Soeiety 51 (11), 130!}-1318.Google Scholar
- Kimms, A., und A. Drexl (1998). Some insights into proportional lot sizing and scheduling. 49(11), 119 & -1205.Google Scholar
- Kirkpatrick, S., C. D. Gelatt Jr und M. P. Vecchi (1983). Optimization by Simulated Annealing. Seience flfIO, 671–580.Google Scholar
- Kuik, R., M. Salomon,L. N. Van und J. Maes (1993). Linear Programming, Simulated Annealing and Tabu Search Heuristics far Lotsizing in Bottleneck Assembly Systems. IIE Transaetions fl5(1), 62–72.Google Scholar
- Ma.es, J., J. McClain und L. Van Wassenhove (1991). Multilevel capacitated lotsizing complexity and LP-based heuristics. European Journal 0/ Operational Research 53(2), 131–148.Google Scholar
- Özdamar, L., und G. Barbar080glu (1999). Hybrid heuristies for the multi-stage capacitated lot sizing and loading problem. Journal 0/ the Operational Research Saciety 50(8), 810-825.Google Scholar
- Özdamar, L., und G. Barbar080glu (2000). An integrated Langrangean relaxation-simulated annealing approach to the multi-level mulit-item capacitated lot sizing problem. Inter national Journal 0/ Produetion Economics 68(3), 31!}-331.Google Scholar
- Pitakaso, R., C. Almeder, K. F. Doerner und R. F. Hartl (2006). Combining populationbased and exact methods for multi-level capacitated lot-sizing problems. International Journal 0/ Produetion Research 44 (22), 4755–4771.CrossRefGoogle Scholar
- Sahling, F., L. Buschkühl, H. Tempelmeier und S. Helber (2009). Solving a multi-level capacitated lot sizing problem with multi-period setup carry-over via a fix-and-optimize heuristic. Computers & Operations Research 36, 254 & -2553.Google Scholar
- Stadtler, H. (1996). Mixed integer programming model formulations for dynamic multi-itern multi-level capacitated lotsizing. European Journal 01 Operational Research 94,561–581.CrossRefGoogle Scholar
- Stadtler, H. (1997). Reformulations of the shortest route model far dynamic multi-item multi-level capacitated lotsizing. OR Speetrum, 87–1)6.Google Scholar
- Stadtler, H. (2003). Multilevellot sizing with setup times and multiple constrained resources: Internally rolling schedules with lot-sizing windows. Operations Research 51 (3),487–502.CrossRefGoogle Scholar
- Stadtler, H. (2011). Multi-Level Single Machine Lot-Sizing and Scheduling with Zero Lead Times. European Journal 0/ Operational Research fl09, 241–252.Google Scholar
- Suerie, C., und H. Stadtler (2003). The capacitated lot-sizing problems with linked lot sizes. Management Seieneo 49(8), 103!}-1O54.Google Scholar
- Tempelmeier, H., und L. Buschkühl (2009). A heuristic for the dynamic multi-level capacitated lotsizing problem. with linked lotsizes far general product structures. OR Spec.trum 31 , 385–404.Google Scholar
- Tempelmeier, H., und M. Derstroff (1996). A Lagrangean-based heuristic for dynamic multilevel multi-item constrained Iotsizing with setup times. Management Science 42 ( 5 ) , 738–757.CrossRefGoogle Scholar
- Tempelmeier, H., und S. Helber (1994). A heuristic for dynamic multi-item multi-level capacitated lotsizing for general product structures. European Journal 0/ Opemtional Research 75, 29 & -31l.Google Scholar
- Wagner, H. M., und T. M. Whitin (1958). Dynamic version of the econornic lot size model. Management Science 5, 89–96.CrossRefGoogle Scholar
- Wu, T., L. Shi und J. Song (2011). An MIP-based interva1 heuristic for the capa.citated multi-levellot-sizing problem with setup times. Annals 0/ Operations Research 196(1) , 63H50.Google Scholar
- Xie, J., und J. Dong (2002). Heuristic genetic a1gorithms for general capacitated lot-sizing problems. Computers and Mathematics with Applications 44, 263–276.CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2015