Advertisement

Das mehrstufige kapazitierte Losgrößenproblem

  • Christian AlmederEmail author
  • Renate TraxlerEmail author
Chapter
  • 16k Downloads

Zusammenfassung

Die Losgrößenplanung spielt eine zentrale Rolle in der taktischen und operativen Planung von Produktions- und Distributionsprozessen. So ist eine effiziente Produktions- und Materialbedarfsplanung, eine effizientes Lagermanagement oder eine effizienten Distributionsplanung ohne die explizite Berücksichtigung und Bestimmung der Losgröße nicht möglich.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Akartnnali, K., und A. J. Miller (2009). A henristic approach for big bucket multi-level production palnning problems. European Journal 0/ Operational Research 193, 396–411.CrossRefGoogle Scholar
  2. Ahnada-Lobo, B., M. A. Carravilla und J. F. Oliveira (2008). A note on "The capacitated lotsizing and scheduling problem with sequence-dependent setup costs and setup times' '. Computers & Operntions Research 95(4), 1374–1376.Google Scholar
  3. Ahneder, C. (2010). A Hybrid Optimization Approach for Multi-Level Capacitated LotSizmg Problems. European Journal of Opemtional Research 200, 59!Hi06.Google Scholar
  4. Ahneder, C., D. Klabjan, R. Traxler und B. Ahnada-Lobo (2015). Lead Time Considerations far the Multi-Level Capacitated Lot-sizing Problem. European Journal 0/ Operational Research 241, 727–738.Google Scholar
  5. Barbarosoglu, G., und L. Özdamar (2000, August). Analysis of solution space-dependent performance of simulated annealing: the case of the multi-level capacitated lot sizing problem. Computers & Qpemtions Research 27(9), 895–903.Google Scholar
  6. Belvaux, G., und A. Wolsey (2000). bc-prod: A Specialized Brauch-and-Cut System for Lot-Sizing Problems. 46(5), 724–738.Google Scholar
  7. Belvaux, G., und L. A. Wolsey (2001). Modelling practical lot-sizing problems as mizedinteger programs. Management Seience 47(7), 99:!-1007.Google Scholar
  8. Berretta, R., P. M. Franca und V. A. Armentano (2005). Metaheuristic approaches for the multilevel resource-constraint lot-sizing problem with setup and lead times. Asia Paeifie Journal of Operational Research 22(2), 261–286.Google Scholar
  9. Billington, P. J., J. O. MeClain und L. O. Thomas (1983). Mathematical programming approach to capacity-constrained {MRP} systems: Review, formulation aud problem reduction. Management Seience 3(1O), 1126–1141.Google Scholar
  10. Bitrao, G. R., und H. H. Yanasse (1982). Computational complexity of the capacitated lot size problem. 28(10), 1174–1186.Google Scholar
  11. Buschkühl, L., F. Sahling, S. Helber und H. Tempe1meier (2010). Dynamie eapacitated lotsizing problems: A classification and review of solution approaches. OR Spectrum 92 ( 2 ) , 231–261.Google Scholar
  12. Clark, A. R., und V. A. Armentano (1995). The application of valid inequalities to the multi-stage lot-sizing problem. 22 (7), 66!Hi80.Google Scholar
  13. Dorigo, M., und L. M. Gambardella (1997). Ant Colony System: A Cooperative Learnin Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation 1 (1).Google Scholar
  14. Glover, F. (1986). Fnture paths for integer programming and links to artificial intelligence. Computers & Operntions Research 19(5), 533–549.Google Scholar
  15. Gupta, D., und T. Magnusson (2005). The capacitated lot-sizmg and schedu1ing problem with sequence-dependent setup C05tS and setup times. Computers & Operations Rese arch 32, 727–747.CrossRefGoogle Scholar
  16. Haase, K. (1994). Lotsizing and Scheduling for Produetion Planning. Springer Berlin.CrossRefGoogle Scholar
  17. H……, K. (1996). Capa.citated lot-sizing with sequence dependent setup costs. OR Spektrum 18, 51–59.Google Scholar
  18. Harris, F. W. (1990). How many parts to malre at once. Operations Research 38, 947–950 (reprinted from Fa.ctory – The Magazine.CrossRefGoogle Scholar
  19. Helber, S. (1995). Lot sizing in capa.citated production planning and control systems. OR Spektrum 17(1), & -18.Google Scholar
  20. Helber, S., und F. Sahling (2010). A fix-and-optimize approach for the multi-level capa.citated lot-sizing problem. International Journal 0/ Production Economics 123, 247–256.CrossRefGoogle Scholar
  21. Hung, Y., und K. Chien (2000). A multi-class multi-level capa.citated lot sizing model. Journal 0/ the Operational Research Soeiety 51 (11), 130!}-1318.Google Scholar
  22. Kimms, A., und A. Drexl (1998). Some insights into proportional lot sizing and scheduling. 49(11), 119 & -1205.Google Scholar
  23. Kirkpatrick, S., C. D. Gelatt Jr und M. P. Vecchi (1983). Optimization by Simulated Annealing. Seience flfIO, 671–580.Google Scholar
  24. Kuik, R., M. Salomon,L. N. Van und J. Maes (1993). Linear Programming, Simulated Annealing and Tabu Search Heuristics far Lotsizing in Bottleneck Assembly Systems. IIE Transaetions fl5(1), 62–72.Google Scholar
  25. Ma.es, J., J. McClain und L. Van Wassenhove (1991). Multilevel capacitated lotsizing complexity and LP-based heuristics. European Journal 0/ Operational Research 53(2), 131–148.Google Scholar
  26. Özdamar, L., und G. Barbar080glu (1999). Hybrid heuristies for the multi-stage capacitated lot sizing and loading problem. Journal 0/ the Operational Research Saciety 50(8), 810-825.Google Scholar
  27. Özdamar, L., und G. Barbar080glu (2000). An integrated Langrangean relaxation-simulated annealing approach to the multi-level mulit-item capacitated lot sizing problem. Inter national Journal 0/ Produetion Economics 68(3), 31!}-331.Google Scholar
  28. Pitakaso, R., C. Almeder, K. F. Doerner und R. F. Hartl (2006). Combining populationbased and exact methods for multi-level capacitated lot-sizing problems. International Journal 0/ Produetion Research 44 (22), 4755–4771.CrossRefGoogle Scholar
  29. Sahling, F., L. Buschkühl, H. Tempelmeier und S. Helber (2009). Solving a multi-level capacitated lot sizing problem with multi-period setup carry-over via a fix-and-optimize heuristic. Computers & Operations Research 36, 254 & -2553.Google Scholar
  30. Stadtler, H. (1996). Mixed integer programming model formulations for dynamic multi-itern multi-level capacitated lotsizing. European Journal 01 Operational Research 94,561–581.CrossRefGoogle Scholar
  31. Stadtler, H. (1997). Reformulations of the shortest route model far dynamic multi-item multi-level capacitated lotsizing. OR Speetrum, 87–1)6.Google Scholar
  32. Stadtler, H. (2003). Multilevellot sizing with setup times and multiple constrained resources: Internally rolling schedules with lot-sizing windows. Operations Research 51 (3),487–502.CrossRefGoogle Scholar
  33. Stadtler, H. (2011). Multi-Level Single Machine Lot-Sizing and Scheduling with Zero Lead Times. European Journal 0/ Operational Research fl09, 241–252.Google Scholar
  34. Suerie, C., und H. Stadtler (2003). The capacitated lot-sizing problems with linked lot sizes. Management Seieneo 49(8), 103!}-1O54.Google Scholar
  35. Tempelmeier, H., und L. Buschkühl (2009). A heuristic for the dynamic multi-level capacitated lotsizing problem. with linked lotsizes far general product structures. OR Spec.trum 31 , 385–404.Google Scholar
  36. Tempelmeier, H., und M. Derstroff (1996). A Lagrangean-based heuristic for dynamic multilevel multi-item constrained Iotsizing with setup times. Management Science 42 ( 5 ) , 738–757.CrossRefGoogle Scholar
  37. Tempelmeier, H., und S. Helber (1994). A heuristic for dynamic multi-item multi-level capacitated lotsizing for general product structures. European Journal 0/ Opemtional Research 75, 29 & -31l.Google Scholar
  38. Wagner, H. M., und T. M. Whitin (1958). Dynamic version of the econornic lot size model. Management Science 5, 89–96.CrossRefGoogle Scholar
  39. Wu, T., L. Shi und J. Song (2011). An MIP-based interva1 heuristic for the capa.citated multi-levellot-sizing problem with setup times. Annals 0/ Operations Research 196(1) , 63H50.Google Scholar
  40. Xie, J., und J. Dong (2002). Heuristic genetic a1gorithms for general capacitated lot-sizing problems. Computers and Mathematics with Applications 44, 263–276.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Lehrstuhl für Betriebswirtschaftslehre, insbesondere Supply Chain Management,Wirtschaftswissenschaftliche FakultätEuropa-Universität Viadrina Frankfürt(Oder)Frankfürt(Oder)Deutschland

Personalised recommendations