Advertisement

Die Resistenzbildung bei Mikroorganismen

  • Günther Gillissen
  • Ilse-Maria Gillissen
Conference paper
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 33)

Zusammenfassung

Die Beobachtungen über das Auftreten einer Chemoresistenz bei Mikroorganismen sind so alt wie die Chemotherapie selbst. Mit der Beschreibung des trypanociden Effekts von p-Rosanilin durch Ehrlich (1907) erfolgte gleichzeitig die Mitteilung über die Möglichkeit einer Resistenzentwicklung (Franke u. Roehl 1907). Aber auch schon früher wurde gegen andere chemische Stoffe eine „Adaptation“ beschrieben (z. B. Kossiakoff 1881, Effront 1891, Davenport u. Neal 1.895, geschichtliche Übersicht s. Abraham 1953). Im Laufe der Entwicklung stellte sich heraus, daß fast bei jedem neuen chemotherapeutischen Stoff auch irgendwelche Resistenzphänomene beobachtet werden konnten. Genannt sei nur die Resistenzbildung gegen Triphenylmethanfarbstoffe, gegen Arsenverbindungen (Browning 1908), gegen Aludrin (Curd, u. Mitarb. 1945) sowie gegen Daraprim (Pyrimethamin) (Falco u. Mitarb. 1951). Die vorgenannten Stoffe wurden vornehmlich gegen Protozoen ausgetestet. Ähnliche Erscheinungen konnten aber auch bei Bakterien beobachtet werden, z. B. eine Resistenzsteigerung bei Pneumokokken gegen Äthylhydrocuprein (Morgenroth u. Levy 1911, Morgenroth u. Kaufmann 1912).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abraham, E. P.: The development of drug restistance in microorganisms. In: Adaptation in microorganisms, p. 201. 3. Symp. of the Soc. for gen. Microbiology. Cambridge: Cambridge University Press 1953.Google Scholar
  2. Abraham, E. P., and E. Chain: An enzyme from bacteria able to distroy penicillin. Nature (Lond.) 146, 837 (1940).Google Scholar
  3. Abraham, E. P., E. Chain, C. M. Fletcher, H. W. Florey, A. D. Gardner, N. G. Heatley and M. A. Jennings: Further observation on penicillin. Lancet 1941II, 176.Google Scholar
  4. Abraham, E. P., and G. G. Newton: Biogenetic and structural relationships among the antibiotics. IV. Internat. Kongr. für Biochemie in Wien 1958, Sympos. Nr V.Google Scholar
  5. Adler, S., A. Sadoosky and L. Bichowsky: Acquired resistance to stilbamidine and pentamidine in Trichomonas vaginalis. J. Palest. Jewish med. Ass. 32, 54 (1947).Google Scholar
  6. Akiba, T.: Origins of bacterial resistance to streptomycin. Diskussion zum Vortrag von W. D. Mcelroy, Spontaneous and induced mutations to drug resistance in E. coli. Erschienen in: Origins of resistance to toxic agents. Proc. of the symp. held in Wash. v. 25.-27. März 1954. New York: Academic Press 1955.Google Scholar
  7. Akiba, T. K. IsHii and N. Tamura: The mechanism of drug resistance. IV. The sensitizer. Igaku to Seibutsugaku 30, 1 (1954).Google Scholar
  8. Alexander, H. E., and G. Leidy: Mode of action of streptomycin on type b H. influenzae. I. Origin of resistant organisms. J. exp. Med. 85, 329 (1947).PubMedCentralPubMedGoogle Scholar
  9. Alexander, H. E. Mode of action of streptomycin on type b Hemophilus influenzae. Nature of resistant variants. J. exp. Med. 85, 607 (1947).Google Scholar
  10. Alexander, H. E. Transformation type specificity of H. influenzae. Proc. Soc. exp. Biol. (N.Y.) 73, 485 (1950).Google Scholar
  11. Alexander, H. E., and G. Leidy Determination of inherited traits of H. influenzae by deoxyribonucleic acid fractions isolated from typ — specific cells. J. exp. Med. 93, 345 (1951).PubMedCentralPubMedGoogle Scholar
  12. Alexander, H. E., and G. Leidy: Induction of streptomycin resistance in sensitive Hemophilus influenzae by extracts containing deoxyribonucleic acid from resistant Hemophilus influenzae. J. exp. Med. 97, 17 (1953).PubMedCentralPubMedGoogle Scholar
  13. Alexander, H. E., and G. Leidy: Origin of species in microorganisms. Use of transformation as a tool. Amer. J. Dis. Child. 90, 560 (1955).Google Scholar
  14. Alexander, H. E. and E. Hahn: Studies on the nature of Hemophilus influenzae cells susceptible to heritable changes by deoxyribonucleic acids. J. exp. Med. 99, 505 (1954).PubMedCentralPubMedGoogle Scholar
  15. Alexander, H. E., and K. A. Stacey: Modification of Dna by ionizing radiations and certain mutagenic chemicals. IV. Internat. Kongr. für Biochemie in Wien 1958, Sympos. Nr IX.Google Scholar
  16. Alimchandani, H. R., and A. Sreenivasan: Inhibition steps in sulfonamide bacteriostasis. Nature (Lond.) 176, 702 (1955).Google Scholar
  17. Alimchandani, H. R., and A. Sreenivasan: Reversal of sulfonamide action in Echerichia coli (B12 auxotroph) by vitamin B12. Biochim. biophys. Acta 18, 567 (1955).Google Scholar
  18. Alimchandani, H. R., and A. Sreenivasan: Inhibition steps in sulfonamide bacteriostasis of Echerichia coli. J. Bact. 73, 538 (1957).PubMedGoogle Scholar
  19. Allen, A. R., and E. A. Roberg: The change from antibiotic-resistant to antibiotic-sensitiv tubercle-bacilli. J. Amer. med. Ass. 159, 1533 (1955).Google Scholar
  20. Alloway, J. L.: Further observations on use of pneumococcus extracts in effecting transformation of type in vitro. J. exp. Med. 57, 265 (1933).PubMedCentralPubMedGoogle Scholar
  21. Altenbern, R. A., and R. D. Housewright: Alanine synthesis and carbohydrate oxidation by smooth brucella abortus. J. Bact. 62, 97 (1951).PubMedGoogle Scholar
  22. Anderson, TH. F., et R. Maze: Analyse de la descendance de cygotes formés par conjugaison chez E. coli K 12. Ann. Inst. Pasteur 93, 194 (1957).Google Scholar
  23. Anderson, TH. F, E. L. Wollman et F. Jacob: Sur le processus de conjugaison et de recombinaison chez Echerichia coli. Iii. Aspects morphologiques en microscopie électronique. Ann Inst. Pasteur 93, 450 (1957).Google Scholar
  24. Angier, R. B., J. H. Boothe, B. L. Hutchings, J. H. Mowat, J. Semb, E. L. R. Stokstad, Y. Subbarow, C. W. Waller, D. B. Cosulich, M. J. Fahrenbach, M. T. Hultquist, E. Kuh, E. H. Northey, D. R. Seeger, J. P. Sichels and J. M. Smith jr.: Synthesis of a compound identical with the L. casei factor isolated from liver. Science 102, 227 (1945).PubMedGoogle Scholar
  25. Angier, R. B., J. H. Boothe, B. L. Hutchings, J. H. Mowat, J. Semb, E. L. R. Stokstad, Y. Subbarow, C. W. Waller, D. B. Cosulich, M. J. Fahrenbach, M. T. Hultquist, E. Kuh, E. H. Northey, D. R. Seeger, J. P. Sichels and J. M. Smith jr.: The structure and synthesis of the liver L. casei factor. Science 103, 667 (1946).Google Scholar
  26. Aoyama, J.: Electron microscopic studies on some species of bacteria, induced resistant to some drugs. J. Antibiot. 5 /7, 387 (1952).Google Scholar
  27. AsNis, R. E., F. B. Cohen and J. S. GoTS: Studies on bacterial resistance to furacin. Antibiot. and Chemother. 2, 123 (1952).Google Scholar
  28. Atwood, K. C., L. K. Schneider and F. J. Ryan: Selective mechanisms in bacteria. Cold Spr. Harb. Symp. quant. Biol. 16, 345 (1951).Google Scholar
  29. Auerbach, C.: Induction of changes in genes and chormosomes. Problems in chemical mutagenesis. Cold. Spr. Harb. Symp. Quant. Biol. 16, 199 (1951).Google Scholar
  30. Auerbach, C., and H. Moser: Production of mutations by monochloro-mustards. Nature (Lond.) 166, 1019 (1950).Google Scholar
  31. Auhagen,: P-aminobenzoyl-1-glutaminsäure, ein gegen Sulfonamide wirksames Derivat des Vitamins H. Versuche an Streptobacterium plantarum. H.ppe-Seylers Z. physiol. Chem. 277, 197 (1943).Google Scholar
  32. Austrian, R.: Observation on the possible role of nucleic acid exchange reactions in pneumococcal capsula type transformation. Bull. Johns Hopk. Hosp. 90, 170 (1952).Google Scholar
  33. Austrian, R.: Observations on the transformation of pneumococcus in vivo. Bull. Johns. Hopk. Hosp. 91, 189 (1952).Google Scholar
  34. Austrian, R.: Morphologic variation in pneumococcus. II. Control of pneumococcal morphology through transformation reactions. J. exp. Med. 98, 35 (1933).Google Scholar
  35. Austrian, R., and H. Berniieimer: In: The chemical basis of heredity, p. 346, edit. W. D. McEloyr and B. Glass. Baltimore: Johns Hopkins Res. 1957.Google Scholar
  36. Austrian, R., and C. M. Macleod: Acquisition of M.-protein by pneumococci through transformation reactions. J. exp. Med. 89, 451 (1949).PubMedCentralPubMedGoogle Scholar
  37. Avery, O. T., C. M. Macleod and M. Mccarty: Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated on pneumococcus type. Iii. J. exp. Med. 79, 137 (1944).PubMedCentralPubMedGoogle Scholar
  38. Backmann, R., u. E. Harbers: Untersuchungen mit Radiophosphor zum Stoffwechsel zweier verschiedener Fraktionen der Desoxyribonucleinsäure am Walker-Carcinom der Ratte. Biochim. biophys. Acta 16, 604 (1955).Google Scholar
  39. Bader, M., R. Bader and C. K. Friedberg: Causes of failure in treatment of subacute bacterial endocarditis. J. Amer. med. Ass. 148, 1498 (1952).Google Scholar
  40. Balassa, RÓZsi: Transformationserscheinungen bei Rhizobien. Vii. Internat. Kongr. für Mikrobiologie in Stockholm 1958.Google Scholar
  41. Barber, M.: Coagulase-positive staphylococci resistant to penicillin. J. Path. Bact. 59, 373 (1947).Google Scholar
  42. Barber, M.: Antibiotics-resistant staphylococcal variants. In: Adaptation in microorganisms. 3. Symp. of the Soc. for gen. Microbiology, p. 235. Cambridge: Cambridge University Press 1953.Google Scholar
  43. Barber, M.: The effect of serial passage in other antibiotics on penicillinase-producing staphylococci. J. gen. Microbiol. 8, 104 (1953).PubMedGoogle Scholar
  44. Barber, M.: Penicillin-resistant and penicillin-dependant staphylococci variants. J. gen. Microbiol. 8, 111 (1953).PubMedGoogle Scholar
  45. Barber, M.: and S. W. A. Kuper: Staphylococcal phosphatase, glucuronidase and sulphatase. J. Path. Bact. 63, 65 (1951).PubMedGoogle Scholar
  46. Barber, M. and J. E. M. Whitehead: Bacteriophage types in penicillin-resistant staphylococcal infection. Brit. med. J. 1949II, 565.Google Scholar
  47. Barbour, R. G. H.: Development of resistance to streptomycin by staphylococcus pyogenes. Aust. J. exp. Biol. med. Sci. 28, 415 (1950).PubMedGoogle Scholar
  48. Barbour, R. G. H., and A. Edwards: Mutation of different bacteriophage types of staphylococci to streptomycin resistance. Aust. J. exp. Biol. med. Sci. 31, 561 (1953).PubMedGoogle Scholar
  49. Barclay, W. R.: The mode of action of isoniazid. Trans. 12. Conf. on the chemotherapy of tuberculosis, Atlanta 1953, p. 249.Google Scholar
  50. Barkulis, I. L.: Inhibition of the anaerobic pyruvate dissimilation in E. coli by dihydrostreptomycin. J. Bact. 61, 375 (1951).Google Scholar
  51. Barnett, M., R. Bushby and D. MitcrIson: Tubercle bacilli resistant to isoniazid: Virulence and response to treatment with isoniazid in guinea-pigs and mice. Brit. J. exp. Path. 34, 568 (1953).PubMedGoogle Scholar
  52. Baron, L. S., S. B. Formal and W. Spilman: Uses of Vi-phage lysates in genetic transfer. Proc. Soc. exp. Biol. (N. Y.) 83, 292 (1953).Google Scholar
  53. Barr, F. S., P. E. Carman and J. R. Harris: Synergism and antagonism in antibiotic combinations. Antibiot. and Chemother. 4, 818 (1954).Google Scholar
  54. Barry, V. C., M. L. Conalty and E. Gaffney: Isoniazid-resistant strains of mycobacterium tuberculosis. Lancet 1953I, 978.Google Scholar
  55. Barry, V. C., M. L. Conalty and E. Gaffney and F. Winder: Isoniazid-resistant strains of M. tuberculosis. Lancet 1953II, 253.Google Scholar
  56. Baskett, A. C., and C. Hinsiielwood: The mechanism of the training of Bact. lactis aero-genes to D-arabinose. Proc. roy. Soc. B 139, 58 (1951).Google Scholar
  57. Bass, A. D., and C. A. DuNN: Distribution of nuclei in rat liver following hypophysectomy. Proc. Soc. exp. Biol. (N. Y.) 96, 175 (1957).Google Scholar
  58. Beale, G. H.: Antigen variation in Paramecium aurelia variety 1. Genetics 37, 62 (1952).PubMedGoogle Scholar
  59. Behrens, O. K., and M. J. Kingkade: Biosynthesis of penicillins. Viii. Studies with new biosynthetic penicillins on penicillin resistance. J. biol. Chem. 176, 1047 (1948).PubMedGoogle Scholar
  60. Beiser, S. M., and S. A. Ellison: The effect of ultraviolet irradiation on pneumococcus transforming factor. Vii. Internat. Kongr. für Mikrobiologie in Stockholm 1958.Google Scholar
  61. Beljanski, M.: Comparaison de souches bactériennes résistantes à des antibiotiques avec des souches sensibles de même espèce. Ann. Inst. Pasteur 83, 80 (1952).Google Scholar
  62. Beljanski, M.: Comparaison de souches bactériennes résistantes à des antibiotiques avec des souches sensibles de même espèce. II. Cas de la pénicilline. Ann Inst. Pasteur 84, 402 (1953).Google Scholar
  63. Beljanski, M.: Comparaison de souches bactériennes résistantes à des antibiotiques avec des souches sensibles de même espèce. Ann. Inst. Pasteur 84, 756 (1953).Google Scholar
  64. Beljanski, M. et J. Guelfi: Etude à l’aide du 32P de l’accumulation des acides nucléiques chez staphylococcus aureus et salmonella entéritidis résistants et sensibles à la streptomycine. Ann. Inst. Pasteur 86, 115 (1954).Google Scholar
  65. Bellami, W. D., and J. W. Klimek: Some properties of penicillin-resistant staphylococci J. Bact. 55, 153 (1948).Google Scholar
  66. Bendich, A.: Studies on the metabolism of the nucleic acids. Exp. Cell Res. Suppl. 2, 181 (1952).Google Scholar
  67. Bendich, A., J. R. Fresco, H. S. Rosenkranz and S. M. Beiser: Fractionation of deoxyribonucleic acid (Dna) by Jon exchange. J. Amer Chem. Soc. 77, 3671 (1955).Google Scholar
  68. Bendich, A., H. B. Pahl and S. M. Beiser: Chromatographic fractionation of deoxyribonucleic acids with special emphasis on the transforming factor of pneumococcus. Cold Spr. Harb. Symp. quant. Biol. 21, 31 (1956).Google Scholar
  69. Bendich, A., H. B. Pahl and S. M. Beiser: Studien über die nicht-enzymatische Polymerisierung von Desoxyribonucleotiden. IV. Internat. Kongr. für Biochemie in Wien 1958. Zit. Angew. Chem. 71, 40 (1959).Google Scholar
  70. H. B. Pahl and S. M. Beiser and G. B. Brown: In: The chemical basis of heredity, edit. W. D. Mcelroy and B. Glass, p. 378. Baltimore: John Hopkins Press 1957.Google Scholar
  71. H. B. Pahl and S. M. Beiser H. S. Rosenkranz and M. RosoFF: Studies of deoxyribonucleic acids with the acid of anion exchangers. In: The biological replication of macromolecules. Symposia of the Soc. for Biology, No Xii, p. 31. Cambridge: Cambridge University Press 1958.Google Scholar
  72. Benzer, S.: Resistance to ultraviolet light as an index to the reproduction of bacteriophage. J. Bact. 63, 59 (1952).PubMedGoogle Scholar
  73. Benzer, S.: Fine structure of a genetic region in bacteriophage. Proc. nat. Acid. Sci. (Wash.) 41/6, 344 (1955).Google Scholar
  74. Benzer, S.: In: The chemical basis of heredity, edit. Mcelroy and Glass. Baltimore: Johns Hopkins Press 1957.Google Scholar
  75. Benzer, S., and E. Freese: Induction of specific mutations with 5-bromouracil. Proc. nat. Acad. Sci. (Wash.) 44, 112 (1958).Google Scholar
  76. Berenblum, I., and R. SchÖNtal: Action of mustard gas (ßß’-dichlorodiethylsulphide) on nucleoproteins. Nature (Lond.) 159, 727 (1947).Google Scholar
  77. Bernstein, H. L.: New mating types in Echerichia coli. Abstr. Genet. Soc. in Heredity 11, 154 (1957).Google Scholar
  78. Benzer, S. Fertility factors in E. coli. Symposia of the Soc. for exp. Biology. No Xii. The biological replication of macromolecules, p. 93. Cambridge: Cambridge University Press 1958Google Scholar
  79. Bertani, G.: A method for detection of mutations using streptomycin dependence in E. coli. Genetics 36, 598 (1951).Google Scholar
  80. Beyjerinck, M. W.: Over verschullende vormen van erfelijke variatie bij mikroben. Versl. Afd. Naturk. kon. Akad. Wetensch. (Amsterd.) 9, 310 (1901).Google Scholar
  81. Beyjerinck, M. W.: Mutation bee Mikroben. Folia microbiol. (Delft) 1, 4 (1912).Google Scholar
  82. Bieling, R.: Über die experimentelle Chemotherapie des Gasbrandes. Z. Immun.-Forsch. 27, 65 (1918).Google Scholar
  83. Bigger, J. W., C. R. Boland and R. A. K. O’Meara: New method of preparing staphylococcal haemolysin. J. Path. Beet. 30, 271 (1927).Google Scholar
  84. Bishop, A.: Drug-resistance in malaria. Brit. med. Bull. 8, 47 (1951).Google Scholar
  85. Bishop, A. and B. Birkett: Drug-resistance in Plasmodium gallinaceum and persistence of paludrineresistance after mosquito transmission. Parasitology 39, 125 (1948).PubMedGoogle Scholar
  86. Bishop, A. and E. W. McConnachie: Resistance to sulphadiazine and “Paludrine” in the malaria parasite of the fowl (P. gallinaceum). Nature (Loud.) 162, 541 (1948).Google Scholar
  87. Bishop, A. and E. W. McConnachie: Stability of paludrine-resistance in Plasmodium gallinaceum in absence of drug. Parasitology 40, 159 (1950).PubMedGoogle Scholar
  88. Bishop, A., and E. W. Mcconnachie: Sulphadiazine-resistance in Plasmodium gallinaceum and its relation to other antimalarial compounds. Parasitology 40, 163 (1950).PubMedGoogle Scholar
  89. Bishop, A., and E. W. Mcconnachie: Cross-resistance between sulphanilamide and paludrine (proguanil) in strain of Plasmodium gallinaceum resistant to sulphanilamide. Parasitology 40, 175 (1950).PubMedGoogle Scholar
  90. Bishop, A., and E. W. Mcconnachie: Development of resistance to metachloridine in Plasmodium gallinaceum in chicks. Parasitology 42, 277 (1953).PubMedGoogle Scholar
  91. Bisset, K. A.: The cytology and life-history of bacteria, Edinburgh: E. and S. Livingstone 1950.Google Scholar
  92. Blair, J. E.: The bacteriophage typing of staphylococci. Bull. N. Y. Acad. Med. 30, 474 (1954).Google Scholar
  93. Blair, J. E., M. Carr and J. Buchman: Action of penicillin on staphylococci. J. Immunol. 52, 281 (1946).PubMedGoogle Scholar
  94. Buss, E. A.: Induced resistance to combinations of antibiotics. VI. Internat. Kongr. für Mikrobiologie in Rom 1953. Riassunti delle Communicazioni vol. I.Google Scholar
  95. Buss, E. A., P. T. Warth and P. H. Long: Studies on combinations od antibiotics in vitro and in experimental infections in mice. Bull. Johns Hopk. Hosp. 90, 149 (1952).Google Scholar
  96. Boivin, A.: Sur le comportement comparé des endotoxines et des exotoxines vis-à-vis de l’acide trichloracétique. C. R. Acad. Sci. (Paris) 203, 284 (1936).Google Scholar
  97. Boivin, A.: Directed mutation in colon bacilli by an inducing principle of desoxyribonucleic nature: its meaning for the general biochemistry of heredity. Symp. quant. Biol. 12, 7 (1947).Google Scholar
  98. Boivin, A., A. Delaunay, R. Vendrely et Y. Lehout: L’acide thymonucléique polymérisé, principe paraissant susceptible de déterminer la spécifité sérologique et l’équipement enzymatique des bactéries. Signification pour la biochimie de l’hérédité. Experientia (Basel) 1, 334 (1945).Google Scholar
  99. Boivin, A., R. Vendrely et C. Vendrely: Biochimie de l’hérédité. L’acide désoxyribonucléique du noyau cellulaire, dépositaire des caractères héréditaires; arguments d’ordre analytique. C.R. Acad. Sci. (Paris) 226, 1061 (1948).Google Scholar
  100. Bondi, A., and C. C. Dietz: Relationship of penicillinase to action of penicillin. Proc. Soc. exp. Biol. (N.Y.) 56, 135 (1944).Google Scholar
  101. Bondi, A., J. Kornblum and M. DE ST. Phalle: The aminoacid requirements of penicillin-resistant and penicillin-sensitive strains of Micrococcus pyogenes. J. Bact. 68, 617 (1954).PubMedGoogle Scholar
  102. Boniece, W. S.: Nutritional requirements of staphylococci with in vivo acquired antibiotic resistance, grown in a minimal medium. Antibiot. and Chemother. 6, 209 (1956).Google Scholar
  103. Bornschein, H., W. Dittrich u. G. HÖHne: Die Entstehung der Chemoresistanz bei Bakterien. Naturwiss. 38, 383 (1951).Google Scholar
  104. Bovet, D., et G. MoNÉZin: Sur l’aptitude remarquable que possèdent différents médicaments arsénicaux à produire des races de Trypanosomes resistants. Bull. Soc. Path. exot. 30, 68 (1937).Google Scholar
  105. Bracco, R. M., M. R. Krauss, A. S. Roe and C. M. Macleod: Transformation reactions between pneumococcus and three strains of streptococci. J. exp. Med. 106, 247 (1957).PubMedCentralPubMedGoogle Scholar
  106. Brachet, J.: La localisation des acides pentosonucléiques dans les tissus animaux et les oeufs d’Amphibiens en voie de developement. Arch. Biol. (Paris) 53, 207 (1942).Google Scholar
  107. Brachet, J.: In: The nucleic acids, vol. 2, p. 475, edit. by Chargaff and Davidson. New York: Academic Press 1955.Google Scholar
  108. Braun, W.: Dissociation in Brucella abortus; demonstration of role of inherent and environmental factors in bacterial variation. J. Bact. 51, 327 (1946).Google Scholar
  109. Braun, W.: Bacterial dissociation; critical review of phenomenon of bacterial variation. Bact. Rev. 11, 75 (1947).PubMedGoogle Scholar
  110. Braun, W.: Studies on population changes in bacteria and their relation to some general biological problems. Amer. Naturalist 86, 355 (1952).Google Scholar
  111. Braun, W.: Bacterial genetics. Philadelphia and London: W. B. Saunders Company 1953.Google Scholar
  112. Braun, W. and K. H. Lewis: Colony morphology of E. coli mutants as a tool for genetic studies. Genetics 35, 97 (1950).Google Scholar
  113. Breinl, F., u. M. Nierenstein: Weitere Beobachtungen über Atoxylfestigkeit der Trypanosomen. Dtsch. med. Wschr. 34, 1181 (1908).Google Scholar
  114. Bringmann, G.: Vergleichende licht-und elektronenmikroskopische Untersuchungen an Oszillatorien. Planta (Berl.) 38, 541 (1950).Google Scholar
  115. Bringmann, G.: Elektronenmikroskopische Studien über die Kernaequivalenz und die Zell-organisation von Bacillus polymyxa Prazmowski und andere Bazillen. Zbl. Bakt., I. Abt. Orig. 156, 547 (1951).Google Scholar
  116. Bringmann, G., H. Ruska, I. Neckel u. G. Schuster: Licht-und elektronenmikroskopische Untersuchungen über die zytologische Natur der Granula von Corynebacterium diphtheriae. Zbl. Bakt., I. Abt. Orig. 156, 493 (1951).Google Scholar
  117. Brown, G.: Studies on nucleic acid metabolism. 1. Internat. Congr. of Biochemistry, Cambridge 1949. Abstracts, Sect. 6, p. 215, 1949.Google Scholar
  118. Brown, G., G. L., and A. V. Brown: Fractionation of deoxyribonucleic acids and reproduction of T2-bacteriophage. The biological replication of macromolecules. Symp. Soc. exp. Biol. 12, 6 (1958).Google Scholar
  119. Brown, G., and A. V. Martin: Fractionation of the deoxyribonucleic acid of Ter-bacteriophage. Nature (Lond.) 176, 971 (1955).Google Scholar
  120. Brown, G., and N. W. Symonds: Cit. G. L. Brown and A. V. Brown, The biological replication of macromolecules. Symp. Soc. exp. Biol. 12, 6 (1958).Google Scholar
  121. Brown, G., and M. Watson: Heterogenicity of deoxyribonucleic acids. Nature (Lond.) 172, 339 (1953).Google Scholar
  122. Browning, C. H.: Chemotherapy in trypanosome-infections: an experimental study. J. Path. Bact. 12, 166 (1908).Google Scholar
  123. Bryce, L. M., and PH. M. Rountree: Production of a-toxin by staphylococci. J. Path. Bact. 10, 173 (1936).Google Scholar
  124. Bryson, V.: The effect of nitrogen mustard. J. Bact. 56, 423 (1948).PubMedGoogle Scholar
  125. Bryson, V.: Factors influencing selection in mixed populations of Escherichia coli. VI. Internat. Kongr. für Mikrobiologie in Rom 1953. Riassunti delle Communicazioni, vol. I.Google Scholar
  126. Bryson, V., and H. Davidson: Spontaneous and ultra-violet induced mutations to page resistance in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 37, 784 (1951).Google Scholar
  127. Bryson, V., H. Deiches and W. Szybalski: Isoniazid-dependent strains of Mycobacterium ranae. Amer. Rev. Tuberc. 68, 631 (1953).Google Scholar
  128. Ryson, V., and M. Demerec: Patterns of resistance to antimicrobial agents. Ann. N.Y. Acad. Sci. 53, 283 (1950).Google Scholar
  129. Ryson, V., E. Rosenblum, S. Kaplan, H. Hershey, H. Cuneo and I. Dittman: Genetic and biochemical studies of bacteria. Ann. Rep. Biol. Lab. Cold Spr. Harb. 62, 24 (1951).Google Scholar
  130. Ryson, V., and W. Szybalski: Microbial selection. Science 116, 45 (1952).Google Scholar
  131. Ryson, V., and W. Szybalski: Microbial drug resistance. Advanc. Genet. 7, 1 (1955).Google Scholar
  132. Buck, M., A. C. Farr and R. J. Schnitzer: The anti-Borrelia effect of Borrelidin. Trans. N.Y. Acad. Sci. 11, 207 (1949).PubMedGoogle Scholar
  133. Ryson, V., and W. Szybalski, and R. J. Schnitzer: The development of drug resistance of M. tuberculosis to isonicotinic acid hydrazide. Amer. Rev. Tuberc. 65, 759 (1952).Google Scholar
  134. Burchental, J. H., G. B. Waring and D. J. Hutchison: Development of resistance to 4-amino-N-10-methyl-pteroylglutamic acid (Amethopterin) by Streptococcus faecalis. Proc. Soc. exp. Biol. (N.Y.) 78, 311 (1951).Google Scholar
  135. Butler, G. C.: The effect of X- and y-rays on aqueous solutions of sodium thymonucleate. Canad. J. Chem. B 27, 972 (1949).Google Scholar
  136. Butler, G. C., J. A. V.: The heterogeneity of nucleic acids. IV. Internat. Kongr. für Biochemie in Wien 1958, Sympos. No IX.Google Scholar
  137. Butler, G. C., L. A. Gilbert and K. A. Smith: Radiomimetic action of sulphur-and nitrogen „mustards“ on deoxyribonucleic acid. Nature (Lond.) 165, 714 (1950).Google Scholar
  138. Butler, G. C., and K. A. Smith: The action of ionising radiations and of radiomimetic substances on deoxynucleic acid. Part. I. The action of some sompounds of the „mustard“ type. J. them. Soc. 3411 (1950).Google Scholar
  139. Cabelli, V J, and M. J. Pickett: The significance of lactose fermentation and its realtionship to resistance in Klebsiella pneumoniae. J. Bact. 66, 4–43 (1953).Google Scholar
  140. Campbell, R. M., and H. W. Kosterlitz: The absence of dietary effects on the Dna content of liver nuclei of the adult rat. Science 115, 84 (1952).PubMedGoogle Scholar
  141. Cantrell, W.: Behavior of mixtures of exophenarsine-resistant and unmodified strains of trypanosoma equiperdum in the rat. Exp. Parasit. 5, 178 (1956).Google Scholar
  142. Caspari, E.: Cytoplasmic inheritance. Advanc. in Genet. 2 (1948).Google Scholar
  143. Caspersson, I.: Studien über den Eiweißsumsatz der Zelle. Naturwiss. 29, 33 (1941).Google Scholar
  144. Cates, I. E., R. V. Christie and L. P. Garrod: Penicillin resistant subacute bacterial endocarditis treated by a combination of penicillin and streptomycin. Brit. med. J. 1951 I, 653.Google Scholar
  145. Cavalli, L. L.: Genetic analysis of drug-resistance. Bull. Wld Hlth Org. 6, 185 (1952).Google Scholar
  146. Cavalli, L. L., and G. A. Maccacaro: Chloromycetin resistance in E. coli a case of quantitative inheritance in bacteria. Nature (Loud.) 166, 991 (1950).Google Scholar
  147. Cavalli, L. L., and G. A. Maccacaro: Polygenetic inheritance of drug resistance in the bacterium E. coli. Heredity 6, 311 (1951).Google Scholar
  148. Cavalli-Sforza, L. L., and J. L. Jinks: Studies on the genetic system of Escherichia coli K 12. J. Genet. 54, 87 (1956).Google Scholar
  149. Cavalli-Sforza, L. L., and J. Lederberg: Genetics of resistance to bacterial inhibitors. VI. Internat. Kongr. für Mikrobiologie in Rom 1953. Symposium: Growth inhibition and chemotherapy —Übersicht.Google Scholar
  150. Cavalli-Sforza, L. L., and J. Lederberg: Recombination in bacteria. VI. Internat. Kongr. für Mikrobiologie in Rom 1953. Riassunti delle Communicazioni, vol. I.Google Scholar
  151. Cavalli-Sforza, L. L., and J. Lederberg: Isolation of pre-adaptive mutants in bacteria by sib selection. Genetics 41, 367 (1956).Google Scholar
  152. Chabbert, Y., et J. Debruge: La résistance naturelle des staphylococques au chloramphénicol. Fréquence des variants sensibles. Production d’une substance antagoniste du chloramphénicol. Ann. Inst. Pasteur 91, 225 (1956).Google Scholar
  153. Chain, E., and E. C. Duthie: Bactericidal and bacteriolytic action of penicillin on the staphylococcus. Lancet 19451, 652.Google Scholar
  154. Chandler, C. A., V. Z. Davidson, P. H. Long and J. J. Monnier: Resistance of staphylococci to penicillin: Production of penicillinase and its inhibition by the action of aureomycin. Bull. Johns Hopkins Hosp. (1951).Google Scholar
  155. Chandler, C. A., and E. B. Schoenbach: Studies on bacterial resistance to streptomycin. Proc. Soc. exp. Biol. (N.Y.) 64, 208 (1947).Google Scholar
  156. Chapman, G. H., C. Berens, A. Peters and L. Curcio: COagulase and hemolysin tests as measures of pathogenicity of staphylococci. J. Bact. 28, 343 (1934).PubMedGoogle Scholar
  157. Chargaff, E., C. F. Crampton and R. Lipshitz: Separation of calf thymus deoxyribonucleic acid in to fractions of different composition. Nature (Lond.) 172, 289 (1953).Google Scholar
  158. Chargaff, E., and J. N. Davidson: The nucleis acids, vol. I and II. New York: Academic Press 1955. Chase, M., and A. H. Doermann: Zit. Hotchkiss 1958.Google Scholar
  159. Christie, R., E. A. North and B. J. Parkin: Criteria of pathogenicity in staphylococci. Aust. J. exp. Biol. med. Sci. 24, 73 (1946).PubMedGoogle Scholar
  160. Clapper, W. E., and M. E. Heatherman: Relation of induced sulfonamide resistance to biochemical properties in a-streptococci. Proc. Soc. exp. Biol. (N.Y.) 68, 392 (1948).Google Scholar
  161. Clapper, W. E., and M. E. Heatherman: Biochemical properties of sulfonamide-resistant strains of streptococcus mitis and their similarity to enterococci. Proc. Soc. exp. Biol. (N.Y.) 73, 153 (1950).Google Scholar
  162. Clapper, W. E., and C. Suss: The in vitro effect of combinations of antibiotics on resistant strains of bacterial commonly found in urinary tract infections. Antibiot. and Chemother. 2, 75 (1957).Google Scholar
  163. Clowes, R., and D. Rowley: Some observations on linkage effects in genetic recombination in Escherichia coli K 12. J. gen. Microbiol. 11, 250 (1954).PubMedGoogle Scholar
  164. Cohen, S. S.: Cit. M. Corn, J. Monod in: Specific inhibition and induction of enzyme biosynthesis. In: Adaptation in microorganisms. 3. Sympos. of the Soc. for Gen. Microbiology. Cambridge: Cambridge University Press 1953.Google Scholar
  165. Cohen-Bazire, G., and M. Jolit: Cit. M. Cohn, J. Monod in: Specific inhibition and induction of enzyme biosynthesis. In: Adaptation in microorganisms. 3. Sympos. of the Soc. for Gen. Microbiology. Cambridge: Cambridge University Press 1953.Google Scholar
  166. Corn, M., and J. Monod: Specific inhibition and induction of enzyme biosynthesis. In: Adaptation in microorganisms. 3. Sympos. of the Soc. for Gen. Microbiology. Combridge: Cambridge University Press 1953.Google Scholar
  167. Cole, E. H., and C. N. Hinshelwood: The catalase activity of Bact. lattis aerogenes. Trans. Faraday Soc. 43, 266 (1947).Google Scholar
  168. Cole, E. H., L. J., and W. H. Wright: Application of the pure line concept to bacteria. J. infect. Dis. 19, 209 (1916).Google Scholar
  169. Collard, P.: The distribution of sensitivity to antibiotics in bacterial populations. VI. Inter- nat. Kongr. für Mikrobiologie in Rom 1953. Riassunti delle Communicationi, vol. I.Google Scholar
  170. Collard, P., and R. Knox: The effect of aureomycin on the sensitivity of B. cereus to penicillin. VI. Internat. Kongr. für Mikrobiologie in Rom 1953. Riassunti delle Communicazioni vol. I.Google Scholar
  171. Collier, H. V. J., and M. Phillips: The action of 2: 4-diamino-6: 7-dibenzylpteridine against antibiotic-resistant staphylococci. Brit. J. Pharmacol. 8, 444 (1953).Google Scholar
  172. Collier, H. V. J., W. A.: Untersuchungen über die Festigung von Tsetsetrypanosomen gegen Bayer 205 und Arsenikalien. Arch. Georg-Speyerhaus 17, 26 (1924). Arbeiten aus dem Staatsinstitut für experimentelle Therapie und dem Georg Speyer-Haus zu Frankfurt am Main.Google Scholar
  173. Conalty, M. L., and E. E. Gaffney: Studies on isoniazid-resistant strains of mycobacterium tuberculosis; virulence for mice and guinea pigs and growth patton (cording) in vitro of strains resistant to 100 micrograms of isoniazi per milliliter. Amer. Rev. Tubers. 71, 799 (1955).Google Scholar
  174. Cooper, M. L., and H. M. Keller: Sodium sulfathiazole resistant Shigella paradysenteriae Flexner and Sonne. Proc. Soc. exp. Biol. (N.Y.) 51, 238 (1942).Google Scholar
  175. Cooper, M. L., and H. M. Keller: Diskussionsbemerkung zum Referat von M. R. Pollock. Stages in enzyme adaptation. In: Adaptation in microorganisms. 3. Sympos. of the Soc. for Gen. Microbiology. Cambridge: Cambridge University Press 1953.Google Scholar
  176. Cooper, M. L., and H. M. Keller: The site of action of penicillin: Some properties of the penicillin-binding component of staphylococcus aureus. J. gen. Microbiol. 12, 100 (1955).PubMedGoogle Scholar
  177. Cooper, M. L., and D. Rowley: Investigations with radioactive penicillin. Nature (Lond.) 163, 480 (1949).Google Scholar
  178. Corey, R. R., and M. Starr: Genetic transformation of streptomycin resistance in Xanthomonas phaseoli. J. Bact. 74, 146 (1957).PubMedGoogle Scholar
  179. Crampton, C. F., R. Lipshitz and E. Chargaff: Studies on nucleoproteins. I. Dissociation and reassociation of the deoxyribonucleohistone of calf thymus. J. biol. Chem. 206, 499 (1954).Google Scholar
  180. Crampton, C. F., R. Lipshitz and E. Chargaff: Studies on nucleoproteins. II. Fraction of deoxyribonucleic acids through fractional dissociation of their complexes with basic proteins. J. biol. Chem. 211, 125 (1954).PubMedGoogle Scholar
  181. Crick, F. H. C., J. S. Griffith and L. E. Orgel: Codes without commas. Proc. nat. Acad. Sci. (Wash.) 43, 416 (1957).Google Scholar
  182. Crick, F. H. C., and J. D. Watson: The complementary structure of deoxyribonucleic acid. Proc. roy. Soc. A 223, 80 (1954).Google Scholar
  183. CuChler, A. C., and C. M. Malanga: Studies on drug resistance in coccidia. J. Parasit. 41, 302 (1955).Google Scholar
  184. Cunningham, L., A. C. Griffin and J. M. Lucx: The deoxyribonucleic content per nucleus in normal precancerous and cancerous tissues of the rat. Cancer Res. 10, 211 (1950).Google Scholar
  185. Cunningham, L., A. C. Griffin and J. M. Lucx: Polyploidy and cancer. The desoxypentosenucleic acid content of nuclei of normal precancerous and neoplastic rat tissues. J. gen. Physiol. 34, 59 (1950).PubMedCentralPubMedGoogle Scholar
  186. Curd, F. H. S., D. G. Davey and F. L. Rose: Studies on synthetic antimalarial drugs; general chemical considerations. Ann. Prof. Med. Parasit. 39, 157 (1945).Google Scholar
  187. Curd, F. H. S., D. G. Davey and F. L. Rose: Studies on synthetic antimalarial drugs; biological methods. Ann. Prof. Med. Parasit. 39, 139 (1945).Google Scholar
  188. Daly, M. M., V G Allfrey and A. E. Mirsky: Purine and pyrimidine contents of some desoxypentose nucleic acids. J. gen. Physiol. 33, 497 (1949).Google Scholar
  189. Darlington, C. D.: Heredity, development and infection. Nature (Lond.) 154, 164 (1944).Google Scholar
  190. Davenport, C. B., and H. V. Neal: Studies in morphogenesis. On the acclimatization of organisms to poisonous chemical substances. Arch. Entwickl.-Meth. Org. 2, 564 (1895).Google Scholar
  191. Davidson, J. N., I. Leslie and I. C. White: The nucleic-acid content of the cell. Lancet 1951 I, No 1287, 260.Google Scholar
  192. Davis, B.: The isolation of biochemically-deficiant mutants of bacteria by penicillin. J. Amer. chem. Soc. 70, 4267 (1948).Google Scholar
  193. Davis, B.: Nonfiltrability of the agents of genetic recombination in E. coli. J. Bact. 60, 507 (1950).Google Scholar
  194. Davis, B.: Aromatic biosynthesis. Iii. Role of p-aminobenzoic acid in the formation of vitamin Biz. J. Bact. 62, 221 (1951).PubMedGoogle Scholar
  195. Davis, B., and W. K. Maas: Analysis of the biochemical mechanism of drug resistance in certain bacterial mutants. Proc. nat. Acad. Sci. (Wash.) 38, 775 (1952).Google Scholar
  196. Davison, P. F., B. E. Conway and J. A. V. Butler: The nucleoprotein complex of the cell nucleus and its reactions. Progr. Biophysics 4, 148 (1954).Google Scholar
  197. Dawson, M. H., and R. H. P. Sia: In vitro transformation of pneumococcal types. I. A technique for inducing transformation of pneumococcal types in vitro. J. exp. Med. 54, 681 (1931).Google Scholar
  198. Dean, A. C. R.: Mechanism of resistance to proflavine in B. lactis aerogenes (aerobacter aerogenes). In: Origins of resistance to toxic agents. Proc. of the Sympos. in Washington 25.-27. 3. 1954. Edit. by Sevag, Reid, Reynolds 1955. New York: Academic Press 1955.Google Scholar
  199. Dean, A. C. R., and C. N. Hinshelwood: The resistance of Bact. lactis aerogenes to proflavine (2,8-diaminoacridine). I. The applicability of the statistical fluctuation-test. Proc. roy. Soc. B 139, 236 (1952).Google Scholar
  200. Dean, A. C. R., and C. N. Hinshelwood: Observations on bacterial adaptation, p. 21. In: Adaptation in microorganisms. 3. Sympos. of the Soc. for Gen. Microbiology. Cambridge: Cambridge University Press 1953.Google Scholar
  201. Demerec M.: Production of staphylococcus-strains resistant to various concentrations of penicillin. Proc. nat. Acad. Sci. (Wash.) 31, 16 (1945).Google Scholar
  202. Demerec M.: Origin of bacterial resistance to antibiotics. J. Bact. 56, 63 (1948).PubMedGoogle Scholar
  203. Demerec M.: Chemical mutagens. Hereditas, Suppl. 201 (1949).Google Scholar
  204. Demerec M.: Reaction of populations of unicellular organisms to extreme changes in environment. Amer. Naturalist 84, 5 (1950).Google Scholar
  205. Demerec M.: Reactions of genes of E. coli to certain mutagens. Symp. Soc. exp. Biol. 7, 43 (1953).Google Scholar
  206. Demerec M.: Advanc. Genet. 7 (1955).Google Scholar
  207. Demerec, M., Bertani, G., and J. Flint: A survey of chemicals for mutagenic action on E. coli. Amer. Naturalist 85, 119 (1951).Google Scholar
  208. Demerec M., I. Blomstrand and Z. E. Demerec: Evidence of complex loci in salmonella. Proc. nat. Acad. Sci. (Wash.) 41, 359 (1955).Google Scholar
  209. Demerec M., and E. Cahn: Studies of mutability in nutritionally deficient strains of E. coli. I. Genetic analysis of five auxotrophic strains. J. Bact. 65, 27 (1953).Google Scholar
  210. Demerec M., and U. Fano: Bacteriophage-resistant mutants in E. coli. Genetics 30, 119 (1945).Google Scholar
  211. Demerec M., and J. Hanson: Mutagenic action of manganous chloride. Cold Spr. Harb. Symp. quant. Biol. 16, 215 (1951).Google Scholar
  212. Demerec M., and R. Latarjet: Mutations in bacteria induced by radiations. Cold Spr. Harb. Symp. quant. Biol. 11, 38 (1946).Google Scholar
  213. Deskowitz, M. W.: Bacterial variation as studied in certain unstable variants. J. Bact. 33, 349 (1937).PubMedGoogle Scholar
  214. DI Marco, A.: Biochemical interpretation of antibiotic resistance of microorganisms. IV. Internat. Kongr. für Biochemie in Wien 1958, Sympos. No V.Google Scholar
  215. Doane, E. A., and E. Bogen: Streptomycin-dependent tubercle bacilli. Amer. Rev. Tuberc. 64, 192 (1951).Google Scholar
  216. Dobberstein, H.: Untersuchungen zur Frage der Transformation bei Bakterien. Vortr. vor der Berliner Mikrobiolog. Ges. am 24. 6. 1958. Zbl. Bakt., I. Abt. Ref. 169, 494 (1958).Google Scholar
  217. Dobberstein, H.: Untersuchungen über die Empfindlichmachung antibiotikaresistenter Bakterien. 27. Tagg der Deutsch. Ges. für Hygiene u. Mikrobiologie vom 22.-25. April 1959 in Essen.Google Scholar
  218. Dobberstein, H., F. Herz u. A. Wacker: Als Veröffentlichung angekündigt im Zbl. Bakt., I. Abt. Orig. Inhalt: Sensibilisierung von streptomycinresistenten Pneumokokken durch Desoxyribonucleinsäure.Google Scholar
  219. Dobell, C.: Chronic amoebic dysentery, a new approach to treatment. Lancet 1945II, 68.Google Scholar
  220. Dowling, H. F.: Mixtures of antibiotics. J. Amer. med. Ass. 164, 44 (1957).Google Scholar
  221. Dulbecco, R.: A critical test of the recombination theory of multiplicity reactivation. J. Bact. 63, 199 (1952).PubMedGoogle Scholar
  222. Dunn, D. B., and J. D. Smith: Incorporation of halogenated pyrimidines in to the deoxyribonucleic acids of bacterium coli and its bacteriophages. Nature (Lond.) 174, 305 (1954).Google Scholar
  223. Dunn, D. B., and J. D. Smith: The occurence of 6-methylaminopurine in microbial deoxyribonucleic acids. Biochem. J. 60, X Vii (1955).Google Scholar
  224. Dunn, D. B., and J. D. Smith: Occurence of a new base in the deoxyribonucleic acid of a strain of bacterium coli. Nature (Lond.) 175, 336 (1955).Google Scholar
  225. Durham, N., and O. WYss: Modified method of determining mutation rates in bacteria. J. Bact. 74, 548 (1957).PubMedGoogle Scholar
  226. Duthie, E. S.: The production of penicillinase by organisms of the subtilis group. Brit. J. exp. Path. 25, 96 (1944).Google Scholar
  227. Eagle, H.: The binding of penicillin in relation to its cytotoxic action. VI. Internat. Kongr. für Mikrobiologie in Rom 1953. Symposium: Growth inhibition and chemotherapy.Google Scholar
  228. Eagle, H.: Drug resistance. Ann N Y Acad. Sci. 59, 243 (1954).PubMedGoogle Scholar
  229. Eagle, H.: The binding of penicillin in relation to its cytotoxic action. Correlation between the penicillin sensitivity and combining activity of intact bacteria and cell-free extracts. J. exp. Med. 99, 207 (1954).PubMedCentralPubMedGoogle Scholar
  230. Eagle, H.: Binding of penicillin in relation to its cytotoxic action; reactivity with penicillin of resistant variants of streptococci, pneumococci, and staphylococci. J. exp. Med. 100, 103 (1954).PubMedCentralPubMedGoogle Scholar
  231. Eagle, H., and G. O. Doak: The biolocical activity of arsenosobenzenes in relation to their structure. Pharmacol. Rev. 3, 107 (1951).PubMedGoogle Scholar
  232. Eagle, H., R. Fleischman and M. Levy: Development of increased bacterial resistance to penicillin, chloramphenicol and streptomycin. I. Continuous spectrum of resistance to penicillin, chloramphenicol and streptomycin. J. Bact. 63, 623 (1952).PubMedGoogle Scholar
  233. Eagle, H., M. Levy and R. Fleischman: The binding of penicillin in relation to its cytotoxic action. IV. The amounts bound by bacteria at ineffectiv, growth inhibitory, bactericidal and maximally effectiv concentrations. J. Bact. 69, 167 (1955).PubMedGoogle Scholar
  234. Eagle, H., and H. J. Magnuson: Spontaneous development of arsenic-resistance in Trypanosoma equiperdum, and its mechanism. J. Pharmacol. exp. Ther. 82, 137 (1944).Google Scholar
  235. Ebina, T., u. J. Takashina: Über die Beziehungen zwischen der Isoniazid-Resistenz, der Katalase-Aktivität und der Virulenz der Tuberkelbazillen. Science Rep. Res. Inst. Tohoku Univ. 7, 165 (1957).Google Scholar
  236. Edward, P. R., B. R. Davis and W. B. Cherry: Transfer of antigens by phage lysates with particular reference to the 1, w antigens of Salmonella. J. Bact. 70, 279 (1955).Google Scholar
  237. Effront, J.: Anwendung von Fluorwasserstoff, schwefeligsauren Salzen usw. in der Spiritusfabrik. Kochs Jber. von Gärungsorganismen 2, 154 (1891).Google Scholar
  238. Ehrlich, P.: Chemotherapeutische Trypanosomen-Studien. Berlin. klin. Wschr. 44, 233 (1907).Google Scholar
  239. Eisenberg, P.: Untersuchungen über die Variabilität der Bakterien. IV. Mitt. Über den Variationskreis des B. prodigiosum und B. violaceum. Zbl. Bakt., I. Abt. Orig. 73, 449 (1914).Google Scholar
  240. Elek, S. D., and C. R. F. Hilson: Laboratory aspects of combined antibiotic treatment. Brit. med. J. 1953 II, 1298.Google Scholar
  241. Elek, S. D., and E. Levy: Diffusible antigens in staphylococcal cultures. Brit. J. exp. Path. 31, 358 (1950).PubMedGoogle Scholar
  242. Elek, S. D., and E. Levy: Distribution of haemolysins in pathogenic and non-pathogenic staphylococci. J. Path. Bact. 62, 541 (1950).PubMedGoogle Scholar
  243. Ely, J. O., and M. H. Ross: Deoxyribonucleic acid content of rat liver nuclei influenced by diet. Science 114, 70 (1951).PubMedGoogle Scholar
  244. Emerson, S., and J. E. Cushing: Altered sulphonamide antagonism in Neurospora. Fed. Proc. 5, 379 (1946).PubMedGoogle Scholar
  245. Emmart, E. W., W. T. Mcclosky, M. I. Smith and J. E. Lieberman: Acquired resistance of M. tuberculosis to streptomycin in vitro and its behavior in experimental infections. Amer. Rev. Tuberc. 59, 438 (1949).Google Scholar
  246. English, A. R., and E. McCoy: A study of streptomycin resistance in micrococcus var. aureus. J. Bact. 61, 51 (1951).PubMedGoogle Scholar
  247. Ephrussi, B., and H. Hottinguer: Cytoplasmatic constituents of heredity on an unstable cell state in yeast. Cold. Spr. Harb. Symp. quant. Biol. 16, 75 (1951).Google Scholar
  248. Ephrussi, B., and H. Hottinguer et A. M. Chimenes: Action de l’acriflavine sur les levures. I. La mutation „petite colonie“. A.n. Inst. Pasteur 76, 351 (1949).Google Scholar
  249. Ephrussi, B., et P. P. Slonimski: La synthèse adaptive des cytochromes chez les levures de boulangerie. Biochim. biophys. Acta 6, 256 (1950).Google Scholar
  250. Eprrussj-Taylor, H.: Genetic mechanisms in bacteria and bacterial viruses. Iii. Genetic aspects of transformations of pneumococci. Cold. Spr. Harb. Symp. quant. Biol. 16, 445 (1951).Google Scholar
  251. Eprrussj-Taylor, H.: The chemical basis of heredity. Baltimore: Johns Hopkins Press 1957.Google Scholar
  252. Eseltine, W. P., and V. Rahn: The effect of temperature upon bacteriostasis. J. Bact. 57, 547 (1949).PubMedGoogle Scholar
  253. Eyer, H.: Rundfrage: Über Hospitalismus und seine Bekämpfung. Munch. med. Wschr. 44, 1681 (1958).Google Scholar
  254. Hraeus, G.: Induction of laccase formation in polyporus versicolor. VI. Internat. Kongr. für Mikrobiologie in Rom 1953. Riassunti delle Communicazioni vol. II.Google Scholar
  255. Fairbrotjer, J. E. Southall: In vitro activity of sigmamycin. Lancet 1957 II, 974.Google Scholar
  256. Falco, E. A., L. G. Goodwin, G. H. Hitchings, I. M. Rollo and P. B. Russell: 2:4-diaminopyrimidines—a new series of antimalarials. Brit. J. Pharmacol. 6, 185 (1951).PubMedGoogle Scholar
  257. Farmas-Himsley, H.: Metabolism of dihydrostreptomycin sensitive, resistant and dependent Vibrio comma. Proc. Soc. exp. Biol. (N.Y.) 96, 698 (1957).Google Scholar
  258. Feldman, W. H., A. C. Karlson, and H. C. Hinshaw: Streptomycin-resistant tubercle bacilli. Effects of resistance on therapeutic results in tuberculous guinea pigs. Amer. Rev. Tuberc. 57, 162 (1948).Google Scholar
  259. Feldt, A.: Über Arzneifestigung von Spirochäten im Tierversuch. Klin. Wschr. 33, 1378 (1932).Google Scholar
  260. Feulgen, R., u. H. Rosenbeck: Mikroskopisch-chemischer Nachweis einer Nucleinsäure vom Typus der Thymonucleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Hoppe-Seylers Z. physiol. Chem. 135, 203 (1924).Google Scholar
  261. Few, A. V., P. D. Cooper and D. Rowley: Reaction of penicillin with the staphylococcal cell wall. Nature (Lond.) 169, 283 (1952).Google Scholar
  262. Fischl, V., u. E. Singer: Gewinnung und Verhalten arzneifester Recurrensspirochaeten. Z. Hyg. Infekt.-Kr. 116, 138 (1934).Google Scholar
  263. Fisher, M. W.: Antibacterial properties of crude penicillin. Bull. Johns Hopk. Hosp. 73, 343 (1943).Google Scholar
  264. Fisher, M. W.: The antagonism of the tuberculostatic action of isoniazid by hemin. Amer. Rev. Tuberc. 69, 469 (1954).Google Scholar
  265. Fisher, M. W.: Hemin as a growth factor for certain isoniazid-resistant strains of Mycobacterium tuberculosis. Amer. Rev. Tuberc. 69, 797 (1954).Google Scholar
  266. Fisher, M. W., and M. C. Manning: Synergism between human gamma-globulin and chloramphenicol in the treatment of experimental bacterial infections. Antibiot. and Chemother. 7, 315 (1957).Google Scholar
  267. Fisher, M. W., F. L. Montross and N. M. Palecek: Teh altered growth characteristics of isoniazidresistant tubercle bacilli. Amer. Rev. Tuberc. 66, 626 (1953).Google Scholar
  268. Fluke, D., R. Drew and E. Pollard: Jonizing particle evidence for the molecular weight of the pneumococcus transforming principle. Proc. nat. Acad. Sci. (Wash.) 38, 180 (1952).Google Scholar
  269. Fox, M. S.: Deoxyribonucleic acid incorporation by transformed bacteria. Biochim. biophys. Acta 26, 83 (1957).Google Scholar
  270. Franke, E., u. W. Roehl: Chemotherapeutische Trypanosomenstudien. Berl. klin. Wschr. 44, 233 (1907).Google Scholar
  271. Franklin, R. E., and R. G. Gosling: Molecular configuration in sodium thymonucleate. Nature (Lond.) 171, 740 (1953).Google Scholar
  272. Fredericq, P., et M. Betz-Bareau: Transfer génétique de la propriété de produire un antibiotique. C.R. Soc. Biol. (Paris) 147, 1653 (1953).Google Scholar
  273. Frick, G.: A separation in weak magnesium chloride solutions of nuclear material into two fractions with different purine and pyrimidine content with a note on two unknown substances with a high absorption in the ultra-violet. Biochim. biophys. Acta 19, 352 (1956).Google Scholar
  274. Fukuda, M., and A. Sibatani: Relation between the body weight and the average Dna content of liver nuclei in postnatal growth of the rat. Exp. Cell Res. 4, 236 (1953).Google Scholar
  275. Fulton, J. D., and P. T. Grant: The preparation of a stain of trypanosoma rhodesiense resistant to stilbamidine and some observations on its nature. Exp. Parasit. 4, 377 (1955).PubMedGoogle Scholar
  276. Fulton, J. D., and W. Yorke: Studies in chemotherapy; further observations on stability of drug resistance in trypanosomes. Ann. trop. Med. Parasit. 35, 221 (1941).Google Scholar
  277. Fulton, J. D., and W. Yorke: Studies in chemotherapy; development of plasmoquine-resistance in Plasmodium Knowlesi. Ann. trop. Med. Parasit. 35, 233 (1941).Google Scholar
  278. Fulton, J. D., and W. Yorke: Studies in chemotherapy; further observations on plasmoquineresistance in Plasmodium Knowlesi. Ann trop. Med. Parasit. 37, 41 (1943).Google Scholar
  279. Fusillo, M. H.: Growth of versatile staphylococci; effect of preformed purines, pyrimidines, and essential vitamins in presence or absence of subminimal inhibitory concentrations of penicillin or oxytetracycline in semisynthetic medium. Antibiot. and Chemother. 5, 480 (1955).Google Scholar
  280. Fusillo, M. H.: Selection of stable multiple antibiotic resistant variants of Micrococcus pyogenes in absence of antibiotics. Antibiot. and Chemother. 6, 125 (1956).Google Scholar
  281. Fusillo, M. H., H. E. Noyes, E. J. Pulaski and J. Y. S. Tom: Antimicrobial spectrum and cross resistance studies of erythromycin and carbomycin. Antibiot. and Chemother. 3, 581 (1953).Google Scholar
  282. R. N. Roerig and K. F. Ernst: Phage typing the antibiotic-resistant staphylococci. IV. Incidence and phage type relationship of antibiotic-resistant staphylococci among hospital and non hospital groups. Antibiot. and Chemother. 4, 1202 (1954).Google Scholar
  283. R. N. Roerig and K. F. Ernst, J. F. Metzger and K. F. Ernst: Phage typing the antibiotic-resistant staphylococci. Amer. J. publ. Hlth 44, 317 (1954).Google Scholar
  284. R. N. Roerig, K. F. Ernst, and M. J. Romansky: Simultaneous increase in resistance of bacteria to aureomycin and terramycin upon exposure to either antibiotic. Antibiot. and Chemother. 1, 107 (1951).Google Scholar
  285. Fust, B., u. E. BÖHni: Beitrag zum Problem der Resistenz and Sensibilitätsprüfung gegen Antibiotika and Sulfonamide Bull. schweiz. Akad. med. Wiss. 13, 560 (1957).Google Scholar
  286. Gale, E. F.: The action of penicillin on the assimilation and utilization of amino-acids by gram-positive bacteria. Selective toxicity and antibiotics. Symp. Soc. exp. Biol. 3, 235 (1949).Google Scholar
  287. Gale, E. F., and A. W. Rodwell: The assimilation of amino acids by bacteria. The nature of resistance to penicillin in staphylococcus aureus. J. gen. Microbiol. 3, 127 (1949).PubMedGoogle Scholar
  288. Gallego, A.: Interaction of antibiotics. IV. Internat. Kongr. für Biochemie in Wien 1958, Sympos. No V.Google Scholar
  289. Gamow, G.: Possible relation between deoxyribonucleic acid and protein structures. Nature (Lond.) 173, 318 (1954).Google Scholar
  290. Gamow, G., A. Rich and M. YcAs: The problem of information transfer from the nucleic acids to proteins. Advanc. biol. med. Phys. 4 (1955).Google Scholar
  291. Gamow, G., and M. YČAS: Statistical correlation of protein and ribonucleic acid composition. Proc. nat. Acad. Sci. (Wash.) 41, 1011 (1955).Google Scholar
  292. Garber, E. B., K. Noble and N. Carouso: Genetic studies on the development of streptomycin resistance in Pasteurella pestis. J. Bact. 65, 485 (1953).PubMedGoogle Scholar
  293. GarRod, L. P.: Acquired bacterial resistance to chemotherapeutic agents. Bull. Hyg. (Lond.) 25, 539 (1950).Google Scholar
  294. Garrod, L. P.: The erythromycin group of antibiotics. Brit. med. J. 1957II, 57.Google Scholar
  295. George, M., and K. M. Pandalai: Sensitation of penicillin-resistant pathogens. Lancet 19491, 955.Google Scholar
  296. Geronimus, L. H., and S. Cohen: Increased staphylococcal penicillinase activity accompanying penicillin treatment of experimentally infected mice. J. Bact. 74, 507 (1957).PubMedGoogle Scholar
  297. Geronimus, L. H., and S. Cohen: Further evidence for inducibility of staphylococcal penicillinase. J. Bact. 76, 117 (1958).PubMedGoogle Scholar
  298. Gezon, H. M.: Antibiotic studies on beta hemolytic streptococci: 1. Penicillin resistance acquired by group A organismus. Proc. Soc. exp. Biol. (N. Y.) 67, 208 (1948).Google Scholar
  299. Gezon, H. M.: Antibiotic studies on beta hemolytic streptococci: 2. Penicillin resistance acquired by group B organismus. Proc. Soc. exp. Biol. (N.Y.) 67, 212 (1948).Google Scholar
  300. Gezon, H. M.: Antibiotic studies on beta hemolytic streptococci: 3. Penicillin resistance acquired by group C organismus. Proc. Soc. exp. Biol. (N.Y.) 67, 215 (1948).Google Scholar
  301. Gezon, H. M., and R. R. Carpenter jr.: Streptomycin resistance acquired by Shigella through continous exposure to the antibiotic. Antibiotic annual 1953, p. 576. Med. Enzyclopedia N. Y.Google Scholar
  302. Gezon, H. M., and G. R. Collins: Antibiotic studies on beta hemolytic streptococci; penicillin resistance induced in mine and embryonated eggs. Proc. Soc. exp. Biol. (N.Y.) 69, 312 (1948).Google Scholar
  303. Gezon, H. M., and G. R. CoLlins: Constant treatment technic for inducing antibiotic resistance in streptococci. Proc. Soc. exp. Biol. (N.Y.) 81, 269 (1952).Google Scholar
  304. Gezon, H. M., and E. E. Cryst: Antibiotic studies on beta hemolytic streptococci. V. Streptomycin resistance acquired by group A, B, and C Organismus. Proc. Soc. exp. Biol. (N.Y.) 68. 653 (1948).Google Scholar
  305. Gezon, H. M., and D. M. Fasan: Antibiotic studies on beta hemolytic streptococci; acquired in vitro and vivo resistance to aureomycin. Proc. Soc. exp. Biol. (N.Y.) 73, 10 (1950).Google Scholar
  306. Gezon, H. M., and D. M. Fasan: Cross resistance of streptococci to five streptomyces antibiotics. Science 114, 422 (1951).PubMedGoogle Scholar
  307. Gibson, M. I., and F. Gibson: Development of resistance to dihydrostreptomycin by bacterium coli. Nature (Lond.) 167, 113 (1951).Google Scholar
  308. Giemsa, G.: Läßt sich die Spirochaeta pallida an Wismut gewöhnen ? Münch. med. Wschr. 10, 377 (1925).Google Scholar
  309. Giesbreciit, P.: Zur Struktur des Bakterienzellkerns. Naturwiss. 19, 473 (1958).Google Scholar
  310. Giesbreciit, P., u. G. Piekarski: Zur Organisation des Zellkerns von Bacillus megaterium. Arch Mikrobiol. 31, 68 (1958).Google Scholar
  311. Gillepsie, W. A., and P. M. SimrsoN: Pathogenic staphylococci; detection of alpha-lysin production on rabbit-and sheepblood-agar plates. Brit. med. J. 1948II, 902.Google Scholar
  312. Gillissen, G.: Etude du principe actif des „cultures affrontées“ (moississures et bacille tuberculeux d’Arloing et Courmont). Bull. Soc. Chim. biol. (Paris) 31, 403 (1949). (Nach einem Vortrag auf dem 8. Internat. Kongr. für Biochemie in Paris 1948.)Google Scholar
  313. Gillissen, G.: Etude sur les cultures affrontées (moississures et souche virulente de BK-bovin). C. R. Acad. Sci. (Paris) 228, 1066 (1949).Google Scholar
  314. Gillissen, G.: Ursache und Bedeutung des antimikrobiellen Antagonismus. Zbl. Bakt., I. Abt. Ref. 151, 161 (1953).Google Scholar
  315. Gillissen, G.: Die Beeinflussung der Keimresistenz durch Penicillinase. Arch. Mikrobiol. 27, 146 (1957).PubMedGoogle Scholar
  316. Gillissen, G.: Die Induktion von Penicillinresistenz bei M. pyogenes var. aureus durch Desoxyribonucleinsäure (Dns) von sensiblen und resistenten Staphylokokkenstämmen Naturwiss. 12, 297 (1958).Google Scholar
  317. Gillissen, G.: Der Einfluß von Desoxyribonuclease (DNase) auf die Größe des penicillin-(Pc)resistenten Anteils einer Population von M. pyogenes var. aureus Sg 511. Experientia (Basel) 15, 200 (1959).Google Scholar
  318. Gillissen, G.: Die Aussagekraft einer Phosphatasebestimmung mit lebenden Mikroorganismen. Naturwiss. 46, 211 (1959).Google Scholar
  319. Gillissen, G.: Diskussionsbemerkung zum Vortrag von Dobberstein. Kongr. der Dtsch. Ges. für Mikrobiologie in Essen 1959. Im Druck.Google Scholar
  320. S. M. DE Luna, R. Morel et L. M. Vincent: Antagonisme entre plusieurs moississures et le bacille tuberculeux (souche homogène d’Arloing et Courmont). Nach einem Vortr. auf dem 8. Internat. Kongr. für Biochemie in Paris 1948. Bull. Soc. Chim. biol. (Paris) 31, 398 (1949).Google Scholar
  321. A. Graubner u. A. Fleck: Die Gewinnung von Zellinhaltsstoffen aus Mikroorganismen auf mechanischem Wege. Biochem. Z. 331, 455 (1959).Google Scholar
  322. Gillissen, G. u. R. Schoar: Versuche zur mechanischen Zerstörung von Mikroorganismen. Zbl. Bakt., I. Abt. Orig. 173, 274 (1958).Google Scholar
  323. Gillissen, G. u. H. L. Jonas: Eine bacilläre Inaktivierung von Tyrothricin. Arch. Hyg. (Berl.) 141, 24 (1957).Google Scholar
  324. Gillissen, G. u. M. Ruda: Die Korrelation zwischen Phosphatasenaktivität und Penicillinresistenz bei M. pyogenes var. aureus. Zbl. Bakt., I. Abt. Orig. 171, 281 (1958).Google Scholar
  325. Gillissen, G., u. A. Schilling: Chemoresistenz und Pathogenität von Staphylokokken. Ärztl. Forsch. (im Druck).Google Scholar
  326. Gjessing, E. C., and A. Chanutin: Effect of nitrogen mustards on viscosity of thymonucleate. Cancer Res. 6, 593 (1946).PubMedGoogle Scholar
  327. Glass, E. A., and A. NovIck: Induction of mutation in chloramphenicol inhibited bacteria. J. Bact. 78, 10 (1959).Google Scholar
  328. Glenny, A. T., and M. F. Stevens: Staphylococcus toxins and antitoxins. J. Path. Bact. 40, 201 (1935).Google Scholar
  329. Gocke, T. M., and M. Finland: Development of chloramphenicol-resistant and chlorampheni. col-dependent variants of a strain of Klebsiella pneumoniae. Proc. Soc. exp. Biol. (N. Y.) 74, 824 (1950).Google Scholar
  330. Gocke, T. M., and M. Finland: Cross-resistante to antibiotics; effect of repeated exposure of bacteria to aureomycin, terramycin, chloramphenicol or neomycin on resistance to all of these antibiotics and to streptomycin and penicillin. J. Lab. clin. Med. 38, 719 (1951).PubMedGoogle Scholar
  331. Goldin, M.: Induced resistance in vitro of Pseudomonas aeruginosa to neomycin and streptomycin. Antibiot. Chemother. 3, 881 (1953).Google Scholar
  332. Goldstein, A.: Effect of penicillin on streptomycin-dependent variants in E. coli populations. Science 116, 113 (1952).Google Scholar
  333. Gonder, R.: Experimentelle Studien mit Trypanosomen und Spironemen (Spirochaeten). Z. Immun.-Forsch. 15, 257 (1912)Google Scholar
  334. GooD, M. G.: General theory of bacteriostasis and its application to sulpha drugs. Indian J. med. Sci. 5, 401 (1951).Google Scholar
  335. GooD, M. G.: General theory of bacteriostasis and mechanism of drug resistance. VI. Internat. Kongr. für Mikrobioogie in Rom 1953. Riassunti delle Communicazioni vol. I.Google Scholar
  336. GooD, M. G.: A physico-chemical theory of drug-resistance. Zbl. Bakt., I. Abt. Orig. 161, 195 (1954).Google Scholar
  337. Goodacre, C. L., B. W. Mitchell and D. E. Seymour: Para-aminosalicylic acid. Part II. The in vitro tuberculostatic behaviour of para-aminosalicylic acid and related compounds. Quart. J. Pharm. 21, 301 (1948).Google Scholar
  338. Goodgal, S. H., and R. M. Herriot: In: The chemical basis of heredity, p. 336, edit.Google Scholar
  339. L. D. Mcelroy and B. Glass Baltimore: John Hopkins Press 1957.Google Scholar
  340. GoonLow, R. J., W. Braun and L. A. Mika:The role of d-alanine in the growth and variation of Brucella abortus. Arch. Biochem. 30, 402 (1951).Google Scholar
  341. GoonLow, R. J., L. A. Mika and W. Braun: The effect of metabolites upon variation of Brucella abortus. J. Bact. 60, 291 (1950).Google Scholar
  342. GoonLow, R. J.,L. Tucker, W. Braun and L. A. Mika: Effect of the isomeric configuration of the source of nitrogen on changes in populations and metabolism in cultures of brucella. J. Bact. 63, 681 (1952).Google Scholar
  343. Gots, J. S., and E. C. Chu: Studies on purine metabolism in bacteria I. The role of p-aminobenzoic acid. J. Bact. 64, 537 (1952).PubMedGoogle Scholar
  344. GoonLow, R. J., and M. E. Sevag: Enzymatic studies in the mechanism of the resistance of Pneumococcus to drugs. I. Studies of the dehydrogenase activities and interrelationship of pneumococci susceptible and resistant to acriflavine, atabrine, optochin, propamidine and sulfonamides. J. Bact. 56, 709 (1948).Google Scholar
  345. Gotschlich, E.: Die Variabilität der Mikroorganismen in allgemein-biologischer Hinsicht. Zbl. Bakt., I. Abt. Orig. 93, 1 (1924).Google Scholar
  346. Gould, J. C.: Origin of penicillin-resistant staphylococcus pyogenes. Nature (Lond.) 176, 176 (1955).Google Scholar
  347. Goulding, R., M. B. King, R. Knox and J. M. Robson: Relation between in vitro and in vivo resistance to isoniazid. Lancet 1952II, 69.Google Scholar
  348. Gowen, J. W., and R. E. Lincoln: Test for sexual fusion in bacteria. J. Bact. 44, 551 (1942).PubMedGoogle Scholar
  349. Graessle, O. E., and J. J. Pietrowski: The in vitro effect of paraaminosalicylic acid (Pas) in preventing acquired resistance to streptomycin by M. tuberculosis. J. Bact. 57, 459 (1949).Google Scholar
  350. Green, M. N., and S. Mudd: Susceptibility to furacin of bacterial strains resistant to sulfonamides or antibiotics. Proc. Soc. exp. Biol. (N.Y.) 64, 57 (1947).Google Scholar
  351. Greenberg, J.: Hypersensitivity to sulfadiazine of chlorguanide-resistant strain of Plasmodium gallinaceum. J. nat. Malar. Soc. 8, 80 (1949).Google Scholar
  352. Greenberg, J.: Mixed lethal strains of Plasmodium gallinaceum: Drug sensitive, transferable (SP) x drug resistant, non-transferable (BI). Exp. Parasit. 5, 359 (1956).PubMedGoogle Scholar
  353. Greenberg, J.: Differences in virulence between the parent B I strain of Plasmodium gallinaceum and substrains made resistant to pyrimethamine and metachloridine. Amer. J. trop. Med. Hyg. 5, 377 (1956).Google Scholar
  354. Greenberg, J., and H. Trembley: Apparent transfer of pyrimethamine resistance from BI strain of Plasmodium gallinaceum to M strain. J. Parasit. 40, 667 (1954).PubMedGoogle Scholar
  355. Greer, S., and S. Zamenhof: Effect of 5-bromouracil in deoxyribonucleic acid of E. coli on sensitivity to ultraviolet irradiation. Abstracts, Amer. Chem. Soc. 131 st meeting 3 C (1957).Google Scholar
  356. Griffith, F.: The significance of pneumococcal types. J. Hyg. (Lond.) 27, 113 (1928).Google Scholar
  357. Gros, F., et M. Macheboeuf: Recherches biochimiques sur la penicilline et la streptomycine. 1. Internat. Congr. Biochem. (Cambridge), Abstracts, Sect. 10, p. 458, 1949.Google Scholar
  358. GRÜN, L., u. F. J. Pothmann: Desinfektion des Fußbodens durch Bohnerwachs ? Medizinische 1954, 1718.Google Scholar
  359. GRÜN, L., u. F. J. Pothmann: Alte und neue Probleme der Staphylokokken. Ergebn Mikrobiol. 31, 130 (1958).Google Scholar
  360. Grumbach, A., u. W. Kikuth: Die Infektionskrankheiten des Menschen und ihre Erreger. Bd. I u. II. Stuttgart: Georg Thieme 1958.Google Scholar
  361. Grunbero, E., and E. TitswoRth: Experimental studies on drug resistance of dermatophytes. J. invest. Derm. 25, 113 (1955).Google Scholar
  362. Guild, W. R., and F. M. Defillipes: Ionizing radiation and ultrasonic evidence for a minimum unit of transforming principle Dna. Biochim. biophys. Acta 26, 241 (1957).Google Scholar
  363. Gunnison, J. B., and E. Jawetz: Dynamics of antibiotic synergism. VI. Internat. Kongr. für Mikrobiologie in Rom 1953. Symposium: Growth inhibition and chemotherapy.Google Scholar
  364. Gunnison, J. B. and V. R. Coleman: The effect of combinations of antibiotics on enterococci in vitro. J. Lab. clin. Med. 36, 900 (1950).PubMedGoogle Scholar
  365. Gupta, K. G., and I. C. Chopra: Synergistic action of streptomycin and chloromycetin: in vitro studies. Indian J. med. Res. 41, 415 (1953).Google Scholar
  366. Haas, G. J., and M. G. Sevag: Critical role of amino acids on the sensitivity and development of resistance to polymyxin Bi. Arch. Biochem. 43, 11 (1953).PubMedGoogle Scholar
  367. Hadley, P. E., and F. P. Hadley: Influence of sulfanilamide on mucoid and smooth-phase cultures of hemolytic streptococci in vitro. J. infect. Dis. 68, 246 (1941).Google Scholar
  368. Hahn, F. E.: Modes of action of antibiotics. IV. Internat. Kongr. für Biochemie in Wien 1958, Sympos. No V.Google Scholar
  369. Haight, T. H., and M. Finland: Resistance of bacteria to erythromycin. Proc. Soc. exp. Biol. (N.Y.) 81, 183 (1952).Google Scholar
  370. Haight, T. H., and M. Finland: Observations on mode of action of erythromycin. Proc. Soc. exp. Biol. (N.Y.) 81, 188 (1952).Google Scholar
  371. Hamburger, J. M., L. H. Schmidt and C. L. Sesler: Clinical studies On sulfonamide-resistant pneumococcus. Iii. Development of resistant pneumococci in patients treated for long periods. J. Bact. 45, 28 (1943).Google Scholar
  372. Harrison, V. M., and W. C. Clapper: Growth requirements of streptococcus mitis and sulfonamide resistance. Proc. Soc. exp. Biol. (N.Y.) 74, 857 (1950).Google Scholar
  373. Hart, R. G.: On the distribution of purine and pyrimidine bases in the nucleic acid of tobacco mosaic virus. Proc. nat. Acad. Sci. (Wash.) 43, 457 (1957).Google Scholar
  374. Hashimoto, K.: Further studies on the transformation of streptomycin resistance in pneumococci. Jap. J. Microbiol. 1, 1 (1957).PubMedGoogle Scholar
  375. Hawking, F.: The absorption of acriflavine by trypanosomes. Ann. trop. med. Parasit. 28, 67 (1934).Google Scholar
  376. Hawking, F., and W. L. M. Perry: Resistance to proguanil (paludrine) in mammalian malaria parasite (Plasmodium cynomolgi). Lancet 1948II, 850.Google Scholar
  377. Hayes, W.: The machanism of genetic recombination in Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 18, 75 (1953).Google Scholar
  378. Heilman, F. R., W. E. Herrell, W. E. Wellman and J. E. Geraci: Some laboratory and clinical observations on new antibiotic erythromycin (ilotycin). Proc. Mayo Clin. 27, 285 (1952).Google Scholar
  379. Henry, R. J.: The mode of action of sulfonamides. Found. Rev. Ser., vol. II, No 1, Josiah Macy jr. 1944.Google Scholar
  380. Hernandez, T., A. V. Myatt, G. R. Coatney and G. M. Jeffery: Studies in human malaria, acquired resistance to pyrimethamine (daraprim) by Chesson strain of Plasmodium vivax. Amer. J. trop. Med. Hyg. 2, 797 (1953).Google Scholar
  381. Herrell, W. E., and T. E. Barber: New method for treatment of brucellosis. J. Amer. med. Ass. 144, 519 (1950).Google Scholar
  382. Highes, W. H.: Variation in penicillin resistance in single cell cultures of staphylococcus aureus. J. gen. Microbiol. 6, 175 (1952).Google Scholar
  383. Hinshelwood, C. N.: The chemical kinetics of the bacterial cell. Oxford: Clarendon Press 1947.Google Scholar
  384. Hinbon, K. V. W.: Isonicotinic acid hydrazide and streptomycin resistance. Lancet 1952I, 113.Google Scholar
  385. Hirano, N., K. Nakanishi and K. FukuNaga: Attenuation of highly isoniazid resistant tubercle bacilli. Yokohama med. Bull. 6, 196 (1955).Google Scholar
  386. Hirsch, H.: A comparative study of aconitase, fumarase, and Dpn linked isocitric dehydrogenase in normal and respiration-deficient yeast. Biochim. biophys. Acta 9, 674 (1952).Google Scholar
  387. Hobby, G. L., and N. Dougherty: Isolation of streptomycin-resistant organisms capable of utilizing streptomycin for grows. Proc. Soc. Exp. Biol. (N.Y.) 69, 544 (1948).Google Scholar
  388. Hobby, G. L., G. L., K. Meyer and E. Chaffee: Observations on the mechanism of penicillin action. Proc. Soc. exp. Biol. (N.Y.) 50, 281 (1942).Google Scholar
  389. Hoerlein, B. F.: Inhibiting effect of normal serum and its gamma globulin fraction upon the variation of staph. aureus. J. Bact. 56, 139 (1948).Google Scholar
  390. Hollaender, A., W K Baker and E. H. Anderson: Effect of oxygen tension and certain chemicals on the X-Ray sensitivity of mutation production and survival. Cold Spr. Harb. Symp. quant. Biol. 16, 315 (1951).Google Scholar
  391. Hollaender, A., and C. W. Emmons: Wavelength dependence of mutation production in the ultra-violet with special emphasis on fungi. Cold Spr. Harb. Symp. quant. Biol. 9, 179 (1941).Google Scholar
  392. Hollaender, A.,J. P. Greenstein and W. V. Jenrette: Effects of ultraviolet radiation on sodium thymonucleate. J. nat. Cancer Inst. 2, 23 (1941).Google Scholar
  393. Hollaender, A., and R. F. Kimball: Modification of radiation-induced genetic damage. Nature (Loud.) 177, 726 (1956).Google Scholar
  394. Holper, J. C., C. J. Rickher and J. C. Sylvester: Ristocetin: effect of gamma globulin on in vivo activity. Antibiot. Ann N Y 1958, 577.Google Scholar
  395. Horowitz, N. H., and M. Fling: In: Enzymes: Units of biological structures and function, p. 139, edit. V. H. Gaebler. New York: Academic Press 1956.Google Scholar
  396. Horsfall jr., F. L.: The effect of sulfonamides on virulence of pneumococci. J. clin. Invest. 21, 647 (1942).Google Scholar
  397. HoTchkiss, R. D.: Transfer of penicillin resistance in pneumococci by the desoxyribonucleate derived from resistant cultures. Cold Spr. Harb. Symp. quant. Biol. 16, 457 (1951).Google Scholar
  398. Hotchkiss, R. D.: The biological nature of the bacterial transforming factors. Exp. Cell Res. Suppl. 2, 383 (1952).Google Scholar
  399. Hotchkiss, R. D.: In: Phosphorus metabolism (Mcelroy and Glass, eds.) vol. 2, p. 426. Baltimore John Hopkins Press 1952.Google Scholar
  400. Hotchkiss, R. D.: Cyclical behavior in pneumococcal growth and transformability occasioned by environmental changes. Proc. nat. Acad. Sci. (Wash.) 40, 49 (1954).Google Scholar
  401. Hotchkiss, R. D.: In: The nucleis acids, edit. by E. Chargaff, J. N. Davidson. New York: Academic. Press 1955. The biological role of the deoxyribonucleic acids, p. 435.Google Scholar
  402. Hotchkiss, R. D.: In: Enzymes. Units of structure and function, p. 11P, edit. V. H. Gaebler. New York: Academic. Press 1956.Google Scholar
  403. Hotchkiss, R. D.: In: The chemical basis of heredity. Baltimore: John Hopkins Press 1957.Google Scholar
  404. Hotchkiss, R. D.: Size limitations governing the incorporation of genetic material in the bacterial transformations and other non-reciprocal recombinations. In: The biological replication of macromolecules. Symp. Soc. exp. Biol. 12, 49 (1958).Google Scholar
  405. A. Ciegler, N. Harrison, E. Meyers and B. Pattie: Studies on streptomycin resistant mutants of the genus Shigella. VI. Internat. Kongr. für Mikrobiologie in Rom 1953. Riassunti delle Communicazioni vol. I.Google Scholar
  406. Hotchkiss, R. D., and H. Ephrussi-Taylor: Use of serum albumin as source of serum factor in pneumoccal transformation. Fed. Proc. 10, 200 (1951).Google Scholar
  407. A. H. Evans: Genetic and metabolic mechanisms underlying multiple levels of sulphonamide resistance in pneumococci. In: Symp. on drug resistance in microorganisms. Ciba Found. 1957, 183.Google Scholar
  408. A. H. Evans, and J. Marmur: Double marker transformation as evidence of linked factors in desoxyribonucleat transforming agents. Proc. nat. Acad. Sci. (Wash.) 40, 55 (1954).Google Scholar
  409. Hsie, J., and V. Bryson: Genetic studies on the development of resistance to neomycin and dihydrostreptomycin in mycobacterium ranae. Amer. Rev. Tuberc. 62, 286 (1950).Google Scholar
  410. Hsie, J., and V. Bryson: Variability and relative growth rate of mycobacteria resistant to dihydrostreptomycin, neomycin and isoniazid. Antibiot. Ann 1953, 585.Google Scholar
  411. Rubble, R. H., and L. W. Hedgecock: Antagonism of chemotherapeutic activity of p-aminosalicylic acid in experimental tuberculosis by p-amino-benzoic acid. Proc. Soc. exp. Biol. (N.Y.) 84, 526 (1953).Google Scholar
  412. Hunter, I. E.: Speculations on the mechanism of cure bacterial endocarditis. J. Amer. med. Ass. 144, 524 (1952).Google Scholar
  413. Hunter, I. E.,M. E., S. Mudd and M. A. WoonsuRN: The morphological characteristics of paired sulfonamide-susceptible and sulfonamide-resistant strains of Staph. aureus. J. Bact. 60, 315 (1950).Google Scholar
  414. Ikemi, Y., and S. Nakawatase: Study on the cross resistance of bacillus coli against various antibiotics. J. Antibiot. 5, 112 (1952).Google Scholar
  415. Incze, J. S.: Reversibility of isoniazid resistance developed in mycobacterium tuberculosis. Dis. Chest 26, 127 (1954).PubMedGoogle Scholar
  416. Iseki, S., and T. Sakai: Artificial transformation of 0-Antigen in Salmonella E. group. II. Antigen-transforming factor in. bacilli of subgroup E2. Proc. jap. Acad. Sci. 29, 127 (1953).Google Scholar
  417. Iseki, S., and T. Sakai: Transduction of biochemical properties in Salmonella E group. Proc. jap. Acad. Sci. 30, 143 (1954).Google Scholar
  418. Ivanovres, G.: Antagonism between effects of p-aminosalicylic acid and salicylic acid on growth of M. tuberculosis. Proc. Soc. exp. Biol. (N.Y.) 70, 462 (1949).Google Scholar
  419. Ivanovres, G.: Über die p-Aminosalicylsäure-Festigkeit von Tuberkelbazillen. Experientia (Basel) 6, 108 (1950).Google Scholar
  420. IvErson, W. P., and S. A. Waksman: Use of streptomycin-dependent strains of bacteria for demonstrating the ability of microorganisms to produce streptomycin. Science 108, 382 (1948).Google Scholar
  421. Jackson, G. G., H. F. Dowling and M. H. Lepper: Pathogenicity of staphylococci; comparison of alpha-hemolysin production with coagulasetest and clinical observations of virulence. New Engl. J. med. 252, 1020 (1955).Google Scholar
  422. Jacob, F., et E. L. Wollman: Etapes de la recombination génétique chez Escherichia coli K 12. C.R. Acad. Sci. (Paris) 240, 2566 (1955).Google Scholar
  423. Jacob, F., et E. L. Wollman: Recombination génétique et mutants de fertilité chez Escherichia coli. C. R. Acad. Sci. (Paris) 242, 303 (1956).Google Scholar
  424. Jacob, F., et E. L. Wollman: Analyse des groupes de liaison génétique de différentes souches donatrices d’Escherichia coli K 12. C.R. Acad. Sci. (Paris) 245, 1840 (1957).Google Scholar
  425. Jacob, F., et E. L. Wollman: Genetic and physical determination of chromosomal segments in Escherichia coli. In: The biological replication of macromolecules. Symp. Soc. exp. Biol. 12, 75 (1958).Google Scholar
  426. Jancso, H. V., and N. V. JancsÓ: Zit. Schnitzer u. Grunberg in Drug resistance of microorganisms. New York: Academic. Press 1957.Google Scholar
  427. Jawetz, E.: Antibiotic synergism and antagonism. A.review of experimental evidence. A. M. A. Arch. intern. Med. 90, 301 (1952).Google Scholar
  428. Jawetz, E.: Combined antibiotic action. IV. Internat. Kongr. für Biochemie in Wien 1958, Sympos. No V.Google Scholar
  429. Jawetz, E., and V. R. Coleman: Laboratory and clinical observations on aerosporin (Polymyxin B). J. Lab. clin. Med. 34, 751 (1949).PubMedGoogle Scholar
  430. Jawetz, E., and J. B. GuNnison: Studies on antibiotic synergism and antagonism: A eheme of combined antibiotic action. Antibiot. and Chemother. 2, 243 (1952).Google Scholar
  431. Jawetz, E., and J. B. GuNnison: An experimental basis of combined antibiotic action. (Report to council on pharmacy and chemistry.) J. Amer. med. Ass. 150, 693 (1952).Google Scholar
  432. Jawetz, E., and J. B. Gunnison, J. A. Buff and V. R. Coleman: Studies on antibiotic synergism and antagonism: Synergism among seven antibiotics against various bacteria in vitro. J. Bact. 64, 29 (1952).Google Scholar
  433. R. S. Speck: Studies on antibiotic synergism and antagonism: The interference of aureomycin, chloramphenicol and terramycin with the action of streptomycin. Amer. J. med. Sci. 222, 404 (1951).PubMedGoogle Scholar
  434. R. S. Speck and V. R. Coleman: Studies on antibiotic synergism and antagonism: The interference of chloramphenicol with the action of penicillin. A. M. A. Arch. intern. Med. 87, 349 (1951).Google Scholar
  435. Jensen, J., W. Moller u. E. Thofern: Über die Entstehung abnormer Bakterienformen. Naturwiss. 16, 382 (1954).Google Scholar
  436. Jensen, J., K. A.: Folinsyre. II. K.mi. Dansk. T. Farm. 20, 219 (1946).Google Scholar
  437. Jensen, J., K. Kirk and M. Westergaard: Mutagenic activity of some „Mustard Gas“ compounds. Nature (Lond.) 166, 1020 (1950).Google Scholar
  438. Jensen, J., K. Schmidt u. P. Brandt: Über die bakteriostatische Wirkung von p-(aminomethyl-) Benzolsulfonamid. Kim. Wschr. 21, 1042 (1942).Google Scholar
  439. JoLlos, V.: Experimentelle Protistenstudien. I. Untersuchungen über Variabilität und Vererbung bei Infusorien. Arch. Protistenk. 43, 1 (1921).Google Scholar
  440. Jones, W. F., and M. Finland: Tetracycline, erythromycin, oleandomycin and spiramycin, and combinations of tetracycline with each of the other three agents — Comparison of activity in vitro and antibacterial action of blood after oral administration. New Engl. J. Med. 257, 481 (1957).Google Scholar
  441. Jones, W. F., W. R.: Experimental attempt to induce drug resistance in Entamöba histolytica. Exp. Parasit. 1, 118 (1952).Google Scholar
  442. Jungeblut, E. W.: Optochin-fastness of pneumococci. J. infect. Dis. 41, 345 (1927).Google Scholar
  443. Junowicz-Kocholaty, R., W. Kocholaty, W. Kelner and A. Kelner: Sulfactin, a new antibiotic substance produce& by a soil actinomyces. J. biol. Chem. 168, 765 (1947).Google Scholar
  444. Kaipainen, W. J.: Does incubation of E. coli in nutrient broth containing antibiotic substance cause changes also in resistance to other antibiotics. Ann. Med. exp. Fenn. 29, 100 (1951).Google Scholar
  445. Kaipainen, W. J.: Effect of aureomycin on E. coli in vitro. Ann. Med. exp. Fenn. 29, 223 (1951).Google Scholar
  446. Kaipainen, W. J.: Effect of terramycin on resistance of E. coli. Ann. Med. exp. Fenn. 29, 247 (1951).Google Scholar
  447. Kaplan, R. W.: Spontane Mutabilität bei Bacterium prodigiosum. Z. Naturforsch. 26, 308 (1947).Google Scholar
  448. Kaipainen, W. J.: Auslösung von Mutationen durch sichtbares Licht im vitalgefärbten bacterium prodigiosum. Naturwiss. 35, 127 (1948).Google Scholar
  449. Kaipainen, W. J.: Mutationsforschung bei Bakterien. (Ein Überblick.) Naturwiss. 249, 276 (1950).Google Scholar
  450. Karlson, A. G., and Y. Ikemi: Comparison of virulence for mice and guinea pigs of isoniazidsensitive tubercle bacillus and its isoniazid-resistant variant. Proc. Mayo Clin. 29, 119 (1954).Google Scholar
  451. Kaudewitz, F.: Transduktion. In: Chemie der Genetik. 9. Colloquium der Ges. für physiol. Chemie in Mosbach 1958, p. 104. Berlin-Göttingen-Heidelberg: Springer 1959.Google Scholar
  452. Kauffmann, F.: On the transduction of serological properties in the Salmonella group. Acta path. microbiol. stand. 33, 409 (1953).Google Scholar
  453. Kawamata, J., T. Shigeto and N. Kunita: Sensitization of penicillin resistant micrococcus pyogenes var. aureus by an extract containing nucleic acid from a penicillin sensitive soil bacillus. Med. J. Osaka Univ. 7, 191 (1956).Google Scholar
  454. Kellenberger, E.: Les nucléoides d’E. coli étudiés à l’aide du microscope électronique. Experientia (Basel) 8, 99 (1952).Google Scholar
  455. Kellenberger, E.:Les formes charactéristiques des nucléoides de E. coli et leurs transformations dues à l’action d’agents mutagenes-inducteurs et de bactériophages. VI. Kongr. für Mikrobiologie in Rom 1953. Sympos. citologia batterica.Google Scholar
  456. Kelner, A.: Photoreactivation of ultraviolet irradiated E. coli, with special reference to the dose-reduction principle and to ultraviolet induced mutants. J. Bact. 58, 511 (1949).Google Scholar
  457. Kellenberger, E.:Growth, respiration and nucleic acid synthesis in ultraviolet irradiated and in photo-reactivated Escherichia coli. J. Bact. 65, 252 (1953).Google Scholar
  458. Kikuth, W.: Eine neue Form des Hospitalismus. Dtsch. med. Wschr. 1956, 1217.Google Scholar
  459. Kikuth, W.: Zur Hygiene und Bakteriologie des Staphylokokken-Hospitalismus. Dtsch. med. Wschr. 1957, 549.Google Scholar
  460. Kikuth, W. u. L. GRÜN: Matratzen auf Moltopren-Grundlage. Hygienische Gesichtspunkte zur Desinfektion. Krankenhaus 10, 390 (1955).Google Scholar
  461. Kimmelman, L. J., H. H. Zinsser and M. Klein: Effect of combined therapy on emergence of drug resistant bacteria in urinary tract infections. Observations on origin of resistant strains. J. Urol. (Baltimore) 65, 668 (1951).Google Scholar
  462. Kirby, W. M. M.: Development of sulfathiazole-resistant gonococci in vitro. Proc. Soc. exp. Biol. (N.Y.) 52, 175 (1943).Google Scholar
  463. Kirby, W. M. M.: Bacteriostatic and lytic actions of penicillin on sensitive and resistant staphylococci. J. clin. Invest. 24, 165 (1945).PubMedCentralPubMedGoogle Scholar
  464. Kirby, W. M. M.: Properties of penicillin inactivator extracted from penicillin-resistant staphylococci. J. clin. Invest. 24, 170 (1945).PubMedCentralPubMedGoogle Scholar
  465. Kirby, W. M. M., and L. A. Rantz: Quantitative studies of sulfonamide resistance. J. exp. Med. 77, 29 (1943).PubMedCentralPubMedGoogle Scholar
  466. Kirby, W. M. M., and L. A. Rantz: Extraction of a highly potent penicillin inactivator from penicillin-resistant staphylococci. Science 99, 452 (1944).PubMedGoogle Scholar
  467. Klein, H. P., and M. Dondoroff: The mutation of Pseudomonas putrefaciens to glucose utilization and its enzymatic basis. J. Bact. 59, 739 (1950).PubMedGoogle Scholar
  468. Klein, H. P., and M. Dondoroff: Mechanism for development of resistance to streptomycin and penicillin. J. Bact. 53, 463 (1947).PubMedGoogle Scholar
  469. Klein, H. P., and L. J. Kimmelman: The role of spontaneous variants in the acquisition of streptomycin resistance by the Shigellae. J. Bact. 52, 471 (1946).PubMedGoogle Scholar
  470. Klein, H. P., and S. E. Schorr: The development of bacterial resistance as a factor in antibiotic synergism and antagonism. (Abstract.) Bact. Proc. 1952, 121.Google Scholar
  471. Klein, H. P.: Bakteriologische Grundlagen der chemotherapeutischen Laboratoriumspraxis. Berlin: Springer 1957.Google Scholar
  472. Klieneberger-Nobel: Zit. Piekarski. Die Zellkernäquivalenz der Bakterien. In: Mikroskopische und chemische Organisation der Zelle. 2. Colloquium der Dtsch. Ges. für physiol. Chemie am 6.77. 4. 1951 in Mosbach i. Baden. Berlin-Göttingen-Heidelberg: Springer 1952.Google Scholar
  473. Kliewe, H., u. J. Albrecht: Infektionsprophylaxe auf geburtshilflichen und Säuglingsstationen. Munch. med. Wschr. 1956, 1645.Google Scholar
  474. Klimek, J. W., C. J. Cavallito and J. H. Bailey: Induced resistance of Staph. aureus to various antibiotics. J. Bact. 55, 139 (1948).PubMedGoogle Scholar
  475. Knaysi, G.: Elements of bacterial cytology, 2. edit. Ithaca, N.Y.: Comstock Publ. & Co. 1951.Google Scholar
  476. KNÖLL, H., u. K. Zapf: Untersuchungen zum Problem des Bakterienzellkerns. Zbl. Bakt., I. Abt. Orig. 157, 389 (1951).Google Scholar
  477. Knoppers, A. T.: Acquired resistance (twofold) to quinine in Plasmodium gallinaceum. Nature (Lond.) 160, 606 (1947).Google Scholar
  478. Knott, F. A., and J. B. Blaixley: The control of Staph. aureus infections in a maternity department. J. Obstet. Gynaec. 51, 386 (1944).Google Scholar
  479. Knox, R.: The formation of bacterial urease. J. gen. Microbiol. 5, X X (1951).Google Scholar
  480. Knox, R.: The effect of temperature on enzyme adaptation, growth and drug resistance. In: Adaptation in microorganisms. 3. Sympos. of the Soc. for Gen. Microbiol. Cambridge: University Press 1953.Google Scholar
  481. Knox, R., and P. Collard: The effect of temperature on the sensitivity of Bacillus cereus to penicillin. J. gen. Microbiol. 6, 369 (1952).PubMedGoogle Scholar
  482. Knox, R., M. B. King and R. C. Woodroffe: In vitro action of isoniazid on Mycobacterium tuberculosis. Lancet 1952 II, 854.Google Scholar
  483. Knox, R., P. M. Meadow and A. R. H. Worssam: Relationship between catalase activity, hydrogen peroxyde sensitivity, and isoniazid resistance of mycobacteria. Amer. Rev. Tuberc. 73, 726 (1956).Google Scholar
  484. Knox, R., and R. C. Woodroffe: Haemin-isoniazid intraction and effect of haemin on „reviving“ isoniazid-treated tubercle bacilli. Brit. J. exp. Path. 36, 425 (1955).PubMedGoogle Scholar
  485. Kogut, M., M. R. PoLlocx and E. J. Tridgell: Purification of penicillin — induced penicillinase of bacillus cerceus Nnrl 569. A comparison of its properties with those of a similarly purified penicillinase producet spontaneously by a constitutive mutant strain. Biochem. J. 62, 391 (1956).PubMedGoogle Scholar
  486. Kolmer, J. A., and A. M. Rule: Acquired resistance of Treponema pallidum to penicillin. Proc. Soc. exp. Biol. (N.Y.) 63, 240 (1946).Google Scholar
  487. Kossiakoff, M. G.: De la propriété que possèdent les microbes de s’accomoder aux milieux antiseptique. Ann. Inst. Pasteur 1, 465 (1887).Google Scholar
  488. Kushner, D. J.: The action of chloramphenicol on the oxydation of succinate and related compounds by Pseudomonas fluorescens. Arch. Biochem. 58, 332 (1955).PubMedGoogle Scholar
  489. Kushner, D. J.: The basis of chloramphenicol resistance in Pseudomonas fluorescens. Arch. Biochem. 58, 347 (1955).PubMedGoogle Scholar
  490. Kushnick, T., C. I. Randles, C. I. Gray and J. M. Birkeland: Variants of Escherichia coli; Pseudomonas aeruginosa, and Bacillus subtilis requiring streptomycin. Science 106, 587 (1947).PubMedGoogle Scholar
  491. Lam, G. T., and M. G. Sevag: Mechanism of the development of resistance to streptomycin. II. Biochemical differences of replica colonies. J. Bact. 69, 184 (1955).PubMedGoogle Scholar
  492. Lamater, E. D. DE, M. E. Hunter, W. Szybalski, E. Minsavage and V. Bryson: Observations on the influence of various inhibitors, including colchicine, sodium-para-aminosalicylate, and several antibiotics of tetracycline, erythromycine and streptomycin group on the bacterial nucleus. VI. Internat. Kongr. für Mikrobiologie in Rom 1953. Riassunti delle Communicationi vol. 1.Google Scholar
  493. Lammers, TR.: Rundfrage: Über Hospitalismus und seine Bekämpfung. Antwort auf eine Rundfrage. Munch. med. Wschr. 44, 1681 (1958).Google Scholar
  494. Lampen, J. O., and M. J. Jones: The antagonism of sulfonamide inhibition of certain lactobacilli and enterococci by pteroylglutamic acid and related compounds. J. biol. Chem. 166, 435 (1946).PubMedGoogle Scholar
  495. Lampen, J. O., and M. J. Jones: The growth-promoting and antisulfonamide activity of p-aminobenzoic acid, pteroylglutamic acid, and related compounds for lactobacillus arabinosus and streptobacterium plantarum. J. biol. Chem. 170, 133 (1947).Google Scholar
  496. Lampen, J. O., and M. J. Jones and R. R. RÖPke: Mutant strains of Escherichia coli unable to synthetisize p-aminobenzoic acid. J. biol. Chem. 180, 423 (1949).PubMedGoogle Scholar
  497. R. R. RÖPke and M. J. Jones: The replacement of p-amino-benzoic acid in the growth of a mutant strain of Escherichia coli. J. biol. Chem. 164, 789 (1946).Google Scholar
  498. Landy, M., N. W. Larkum, E. J. Oswald and F. Streightoff: Increased synthesis of p-aminobenzoic acid associated with the development of sulfonamide resistance in staphylococcus aureus. Science 97, 265 (1943).PubMedGoogle Scholar
  499. Langvad-Nielsen, A.: Change of capsule in the pneumococci. Acta path. microbiol. stand. 21, 362 (1944).Google Scholar
  500. Laqueur, E., A. Sluyters u. L. K. Wolff: Experimentelles über das neue chemotherapeutische Antisepticum „Rivanol“. Z. ges. exp. Med. 42, 247 (1924).Google Scholar
  501. Lascelles, J., and D. D. Woods: The synthesis of folic acid by bacterium coli and staphylococcus aureus and its inhibition by sulfonamides. Brit. J. exp. Path. 33, 288 (1952).PubMedGoogle Scholar
  502. Laschet, L.: Zit. Wacker, A. 1959, Diplomarbeit, Techn. Universität Berlin 1958.Google Scholar
  503. Launoy, L., et C. Levaditi: Création d’une race de Treponema pallidum, résistance au mercure. R.R. Soc. Biol. (Paris) 72, 653 (1912).Google Scholar
  504. Lawrence, ST., and D. M. Bonner: In: The chemical basis of heredity, p. 114, edit. W. S. Mcelroy and B. Glass. Baltimore: John Hopkins Press 1957.Google Scholar
  505. Lea, D. E., and C. A. CoULsoN: The distribution of the numbers of mutants in bacterial population. J. Genet. 49, 264 (1949).Google Scholar
  506. Lecocq, E.: Effet bactéricide de la streptomycine et de l’hydrazide isonicotinique sur une souche de mycobacterium tuberculosis résistante à la streptomycine. C. R. Soc. Biol. (Paris) 149, 1518 (1955).Google Scholar
  507. Lecomte, C., et A. DE Smul: Effet du régime hypoprotéique sur la teneur en acide désoxyribonucléique des noyaux hépatiques chez le rat jeune. C. R. Acad. Sci. (Paris) 234, 1400 (1952).Google Scholar
  508. Lederberg, J.: Gene recombination and linked segregations in Escherichia coli. Genetics 32, 505 (1947).PubMedGoogle Scholar
  509. Lederberg, J.: The mutability of several lac mutants of Escherichia coli. Genetics 33, 617 (1948).Google Scholar
  510. Lederberg, J.: Aberrant heterozygotes in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 35, 178 (1949).Google Scholar
  511. Lederberg, J.: The selection of genetic recombinations with bacterial growth inhibitors. J. Bact. 59, 211 (1950).PubMedGoogle Scholar
  512. Lederberg, J.: Genetics in the twentieth century. New York: Macmillan & Co. 1951.Google Scholar
  513. Lederberg, J.: In: Bacterial physiology, edit. by Werkman and Wilson. New York: Acedemic. Press 1951.Google Scholar
  514. Lederberg, J.: Streptomycin resistance: a genetically recessive mutation. J. Bact. 61, 549 (1951).PubMedGoogle Scholar
  515. Lederberg, J.: Extranuclear transmission of the F-compatibility factor in E. coli. Vii. Internat. Kongr. für Mikrobiologie in Stockholm 1958.Google Scholar
  516. L. L. Cavalli and E. M. Lederberg: Sex compatibility in Escherichia coli. Genetics 37, 720 (1952). in Stockholm 1958.Google Scholar
  517. L. L. Cavalli and E. M. Lederberg:, and E. Lederberg: Replica plating and indirect selection of bacterial mutants. J. Bact. 63, 399 (1952). in Stockholm 1958.Google Scholar
  518. L. L. Cavalli and E. M. Lederberg: In: Cellular mechanisms in differentiation and growrh. Princeton: University Press 1956. in Stockholm 1958.Google Scholar
  519. L. L. Cavalli and E. M. Lederberg N. D. Zinder and E. R. Lively: Recombination analysis of bacterial heredity. Cold Spr. Herb. Symp. quant. Biol. 16, 413 (1951). in Stockholm 1958.Google Scholar
  520. L. L. Cavalli and E. M. Lederberg, and N. Zinder: Concentration of biochemical mutants of bacteria with penicillin. J. Amer. chem. Soc. 70, 4267 (1948).Google Scholar
  521. Leidy, G., E. Hahn and H. E. Alexander: In vitro production of new types of hemophilus influenzae. J. exp. Med. 97, 467 (1953).PubMedCentralPubMedGoogle Scholar
  522. Leidy, G., E. Hahn and H. E. Alexander: On the specifity of the desoxyribonucleic acid which induces streptomycin resistance in hemophilus. J. exp. Med. 104, 305 (1956).PubMedCentralPubMedGoogle Scholar
  523. Leiner, M.: Die enzymatische Anpassung bei Mikroorganismen ohne Veränderung des Erbgutes. Ergebn. Mikrobiol. 31, 35 (1958).Google Scholar
  524. Lenert, T. F., and G. L. Hobby: Streptomycindependent strains of mycobacterium tuberculosis. Amer. Rev. Tuberc. 52, 219 (1949).Google Scholar
  525. Lerman, L. S.: Chromatografic fractionation of the transforming principle of the pneumococcus. Biochim. biophys. Acta 18, 132 (1955).Google Scholar
  526. Lerman, L. S., and L. J. Tolmach: Genetic transformation I. Cellular incorporation of Dna accompanying transformation in pneumococcus. Biochim. biophys. Acta 26, 68 (1957).Google Scholar
  527. Leskowitz, S., C. L. Fox jr. and S. Raymond: The isolation and identification of paraaminobenzoic acid produced by staphylococci resistant to sulfonamide. J. exp. Med. 95, 247 (1952).PubMedCentralPubMedGoogle Scholar
  528. Leuchtenberger, C., R. Vendrely and C. Vendrely: A comparison of the content of deoxyribonucleic acid (Dna) in isolated animal nuclei by cytochemical and chemical methods. Proc. nat. Acad. Sci. (Wash.) 37, 33 (1951).Google Scholar
  529. Levaditi, C., et J. Henry-Eveno: La résistance de diverses bactériacées à l’égard de l’ilotycine. Ann. Inst. Pasteur 84, 947 (1953).Google Scholar
  530. Levinthal, C.: The mechanism of Dna replication and genetic recombination in phage. Rend. Ist. lombardo 89, 192 (1955).Google Scholar
  531. Levinthal, C., and C. A. Thomas: Molecular autoradiography the beta-ray counting from single virus particles and Dna molecules in nuclear emulsions. Biochim. biophys. Acta 23, 453 (1957).Google Scholar
  532. Lewis, J. M.: Bacterial variation with special reference to behaviour of some mutabile strains of colon bacteria in synthetic media. J. Bact. 28, 619 (1934).PubMedGoogle Scholar
  533. Lewitt, R. O., and R. H. Hubble: In vitro effect of a tetracycline — Oleandomycin mixture (PA 775) on staphylococci. New Engl. J. Med. 257, 180 (1957).Google Scholar
  534. Limperos, G., and W. A. Mosher: Roentgen irradiation of deoxyribonucleic acid. I. Mechanism of the action of irradiation in aqueous solution. II. Physiochemical properties of deoxyribonucleic acid from irradiated rats. Amer. J. Roentgenol. 63, 681 (1950).Google Scholar
  535. Lincoln, R. E.: Mutation and adaptation of phytomonas Stewartii. J. Bact. 54, 745 (1947).PubMedGoogle Scholar
  536. Lindegren, C. C.: Genetical studies of bacteria. II. The problem of bacterial variation. Zbl. Bakt., II. Abt. 93, 113 (1935).Google Scholar
  537. Lindegren, C. C.: The yeast cell, its genetics and cytology. St. Louis: Educational publishers 1949.Google Scholar
  538. Lindegren, C. C.: S. S.Iegelman and G. Lindegren: Mendelian inheritance of adaption enzymes in yeast. Proc. nat. Acad. Sci. (Wash.) 30, 346 (1944).Google Scholar
  539. Lindemann, J.: Die Staphylokokkeninfektionen. In A. Grumbach u. W. Kikuth 1958, Die Infektionskrankheiten des Menschen und Ihre Erreger, Bd. I u. II. Stuttgart: Georg Thieme 1958.Google Scholar
  540. Linton, A. H.: Influence of inoculum size in antibiotic assays by the agar diffusion technique with Klebsiella pneumoniae and streptomycin. J. Bact. 76, 94 (1958).PubMedGoogle Scholar
  541. Linz, A., et E. Lecocq: Evolution des mélanges de bactéries sensibles et résistantes à la streptomycine (phénomène de Welsch). C.R. Soc. Biol. (Paris) 145, 143 (1951).Google Scholar
  542. Linz, A. R.: Sur le méchanisme de l’action de la streptomycin. II. La résistance à la streptomycin. Ann Inst. Pasteur 78, 105 (1950).Google Scholar
  543. Linz, R.: Sur le méchanisme du phénomène de Welsch. C. R. Soc. Biol. (Paris) 145, 146 (1951).Google Scholar
  544. Linz, R., et Lecocq: Evolution de mélanges artificiels de cellules de mycrobacterium tuberculosis sensibles et résistantes à la streptomycine. C. R. Soc. Biol. (Paris) 145, 149 (1951).Google Scholar
  545. Linz, R.: Sur le méchanisme de l’action de la streptomycine. IV. La résistance de M. tuberculosis. Ann Inst. Pasteur 85, 451 (1953).Google Scholar
  546. Linzenmeier, G.: Zur Antibiotika-und Sulfonamid-Empfindlichkeit einiger praktisch wichtigen Bakterien. Dtsch. med. Wschr. 1956, 965.Google Scholar
  547. Linzenmeier, G.:Probleme der Antibiotika-Therapie. Medizinische 1957, Nr 11 u. 12.Google Scholar
  548. Litt, M., J. Marmur and H. Ephrussi-Taylor: The dependence of pneumococcal transformation on the molecular weight of deoxyribose nucleic acid. Proc. Nat. Acad. Sci. (Wash.) 44, 144 (1958).Google Scholar
  549. Loghem, J. J. Van: Die Individualitätstheorie der bakteriellen Veränderlichkeit. Z. Hyg. Infekt.-Kr. 110, 382 (1929).Google Scholar
  550. Lourie, E. M., and W. Yorke: Studies in chemotherapy: Preparation of strains of trypanosoma resistant to synthalin and indicane diamidine, and analysis of their characters. Ann. trop. Med. Parasit. 32, 201 (1938).Google Scholar
  551. Lowell, F. C., E. Strauss and M. Finland: Observations on the susceptibility of pneumococci to sulfapyridine, sulfathiazole and sulfamethylthiazole. Ann. intern. Med. 14, 1001 (1940).Google Scholar
  552. Lucy, J. A., and J. A. V. Butler: Fractionation of deoxyribonucleoprotein by successive extraction with constant salt concentration. Nature (tond.) 174, 32 (1954).Google Scholar
  553. Luria, S. E.: A test for penicillin sensitivity and resistance in Staphylococcus. Proc. Soc. exp. Biol. (N.Y.) 61, 46 (1946).Google Scholar
  554. Luria, S. E., and M. DelbrÜCK: Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491 (1943).PubMedGoogle Scholar
  555. Lwoff, A.: Lysogeny. Bact. Rev. 17, 269 (1953).Google Scholar
  556. Maas, E. A., and M. J. Johnson: Penicillin uptake by bacterial cells. J. Bact. 57, 415 (1949).Google Scholar
  557. Maas, E. A., and M. J. Johnson: The relations between bound penicillin and growth in staphylococcus aureus. J. Bact. 58, 361 (1949).Google Scholar
  558. Mackaness, C. B.: The action of drugs on intracellular tubercle bacilli. J. Path. Bact. 64, 429 (1952).PubMedGoogle Scholar
  559. Mackaness, C. B., and N. Smith: The action of isoniazid (isonicotinic acid hydrazide) on intracellular tubercle bacilli. Amer. Rev. Tuberc. 66, 125 (1952).Google Scholar
  560. Maclean, F. H., K. B. Rogers and A. Fleming: M. a. B. 693 and pneumococci. Lancet 1939I, 562.Google Scholar
  561. Macleod, C. M.: Metabolism of „sulfapyridine-fast“ and parent strains of pneumococcus type I. Proc. Soc. exp. Biol. (N.Y.) 41, 215 (1939).Google Scholar
  562. Macleod, C. M.: Inhibition of bacteriostatic action of sulfonamide drugs by substances of animal and bacterial origin. J. exp. Med. 72, 217 (1940).PubMedCentralPubMedGoogle Scholar
  563. Macleod, C. M., and G. Daddi: Sulfapyridine-fast strain of pneumococcus type I. Proc. Soc. exp. Biol. (N.Y.) 41, 69 (1939).Google Scholar
  564. Macleod, C. M.: and M. R. Kraus: Stepwise intratype transformation of pneumococcus from R to S by way of variant intermediate in capsular polysaccharide production. J. exp. Med. 86, 439 (1947).PubMedCentralPubMedGoogle Scholar
  565. Marten, A.: Synergism and antagonism between antibiotic mixtures containing erythromycin. Antibiot. and Chemother. 4, 1228 (1954).Google Scholar
  566. Macleod, C. M., and D. Rowley: Genetic analysis of valin inhibition in K 12.strains of E. coli. VI. Internat. Kongr. für Mikrobiologie in Rom 1953. Riassunti delle Communicationi vol. I. Manwaring, W. H.: Environmental transformation of bacteria. Science 79, 466 (1934).Google Scholar
  567. Mark, D. D., and H. Ris: Comparison of deoxyribonucleic acid content in certain nuclei of normal liver and liver tumors. Proc. Soc. exp. Biol. (N.Y.) 71, 727 (1949).Google Scholar
  568. Markov, K. I., G. K. Saev, S. Klein u. A. MoNov: Phosphatasebildung bei den penicillinresistenten und penicillinempfindlichen Staphylokokken. Naturwiss. 18, 443 (1958).Google Scholar
  569. Marks, J.: Effects of hyperthermia and antibacterial agents in tubercle bacilli. Brit. med. J. 1951 II, 1318.Google Scholar
  570. Marmur, J., and D. J. Fluke: Uniformity of ionizing radiation action on several transforming factors of pneumococcus. Arch. Biochem. 57, 506 (1955).PubMedGoogle Scholar
  571. Marshak, A.: Processes coordinating intracellular activity. Symp. Soc. exp. Biol. 12, 205 (1958).PubMedGoogle Scholar
  572. Marwyck, C. Van: Über den antibakterielln Potenzierungseffekt durch chemotherapeutische Kombinationen. Vii. Internat. Kongr. für Mikrobiol. in Stockholm 1958.Google Scholar
  573. Massini, R.: In biologischer Beziehung interessanter Colibazillenstamm. Arch. Hyg. (Berl.) 61, 250 (1907).Google Scholar
  574. Matsumoto, K.: Studies on the reduction of penicillin-resistance. J. Antibiot. 5, 279 (1952).Google Scholar
  575. Mayr-Harting, A.: The acquisition of penicillin resistance by staphylococcus aureus strain Oxford. J. gen. Microbiol. 13, 9 (1955).Google Scholar
  576. Mazia, D.: The particulate organization of the chromosome. Proc. nat. Acad. Sci. (Wash.) 40, 521 (1954).Google Scholar
  577. Mccarty, M., and O. T. Avery: Studies on the chemical nature of the substances inducing transformation of pneumoccal types. II. Effekt of Desoxyribonuclease on the biological activity of the transforming substances. J. exp. Med. 83, 89 (1946).PubMedCentralGoogle Scholar
  578. Mccarty, M., and O. T. Avery: Studies on chemical nature of substance inducing transformation of pneumococcal types; improved method for isolation of transforming substance and its application to pneumococcus types II, Iii and VI. J. exp. Med. 83, 97 (1946).PubMedCentralGoogle Scholar
  579. Mccarty, M., and O. T. Avery, H. E. Taylor and O. T. Avery: Biochemical studies of environmental factors essential in transformation of pneumococcal types. Cold Spr. H.rb. Symp. quant. Biol. 11, 177 (1946).Google Scholar
  580. McCoNnachie, E. W.: The action of amoebicidal drugs on entamoeba invadens Rodhain, 1934 in vitro. Parasitology 44, 132 (1954).Google Scholar
  581. Mccorry, R. L.: The antibiotic sensitivity of staphylococci isolated from nasal carriers. Irish J. med. Sci., VI. ser. Nr 355, 308 (1955).Google Scholar
  582. Mcelroy, W. D.: Evidence for the occurence of intermediates during mutations. Science 115, 623 (1952).PubMedGoogle Scholar
  583. Mcilvain, H.: A nutritional investigation of the antibacterial action of acriflavine. Biochem. J. 35, 1311 (1941).Google Scholar
  584. Mcilvain, H.: Nutritional studies of bacterial variation; resistance to pantoyltaurine in naturally occuring and experimentally prepared strains. Brit. exp. Path. 24, 203 (1943).Google Scholar
  585. Mcilvain, H.: Nutritional studies of bacterial variation; derivation of drug-resistant strains in absence of any inhibitor. Brit. J. exp. Path. 24, 212 (1943).Google Scholar
  586. Mcindoc, W. M., and J. N. Davidson: The phosphorus compounds of the cell nucleus. Brit. J. Cancer 6, 200 (1952).Google Scholar
  587. McKee, C. M., and C. L. Houx: Induced resistance to penicillin of cultures of staphylococcus, pneumococci and streptococci. Proc. Soc. exp. Biol. (N.Y.) 53, 33 (1943).Google Scholar
  588. McKee, C. M., and G. Rake: Activity of penicillin against strains of pneumococci resistant to sulfonamide drugs. Proc. Soc. exp. Biol. (N.Y.) 51, 275 (1942).Google Scholar
  589. Mc QuiLlen, K.: The bacterial surface. IV. Effect of streptomycin in the electrophoretic mobility of E. coli and Staph. aureus. Biochem. biophys. Acta 7, 54 (1951).Google Scholar
  590. Mcveigh, I., and C. J. Hobdy: Development of resistance by micrococcus pyogenes var. aureus to antibiotics: morphological and physiological changes. Amer. J. Bot. 39, 352 (1952).Google Scholar
  591. Meads, M., C. M. Harris, N. M. Haslam and W. A. Cline: Chloramphenicolfastness; development in vivo and experimental production in vitro. J. clin. Invest. 29, 1474 (1950).PubMedCentralPubMedGoogle Scholar
  592. Meads, M., and N. M. Haslam: Quantitative studies on origin and characteristics of streptomycin — fast variants of Klebsiella pneumoniae. J. Immunol. 63, 1 (1949).PubMedGoogle Scholar
  593. Medawar, P. B.: Cellular inheritance and transformation. Biol. Rev. 22, 360 (1947).PubMedGoogle Scholar
  594. Meier, R., u. L. Neipp: Verstärkung der chemotherapeutischen Wirkung von Sulfonamiden durch zusätzliche Behandlung mit chemotaktisch wirkenden Polysacchariden aus Ham und Bakterien. Schweiz. med. Wschr. 1956, 249.Google Scholar
  595. Meissner, G.: Zur Frage der Virulenz chemoresistenter Tuberkelbakterien. I. Ein Fall mit Doppelresistenz gegen Streptomycin und Isoniazid. Beitr. Klin Tuberk. 110, 219 (1953).Google Scholar
  596. Meissner, G.: Virulence of isoniazid resistant tubercle bacilli; recovered from patients during treatment. Dis. Chest 26, 15 (1954).PubMedGoogle Scholar
  597. Meissner, G.: Zur Frage der Virulenz chemoresistenter Tuberkelbakterien. II. In vivo Inh-resistent gewordener Tuberkelbakterien. Beitr. Klin. Tuberk. 110, 538 (1954).Google Scholar
  598. Meissner, G., u. R. BÖNicke: Die Beziehungen zwischen Katalase-Inaktivierung, Sensibilitätsminderung für Isoniazid und Virulenzschädigung für das Meerschweinchen. Untersuchungen an frisch isolierten Tuberkelbakterienstämmen mit unterschiedlicher, aber jeweils totaler Inh-Resistenz. Beitr. Klin Tuberk. 116, 501 (1957).Google Scholar
  599. Merkel, J. R., and E. Steers: Relationship between chloramphenicol reductase activity and chloramphenicolresistance in E. coli. J. Bact. 66, 389 (1953).Google Scholar
  600. Micfaflis, P.: Die Bedeutung des plasmatischen Erbgutes für die Evolution. Vii. Internat. Bot. Kongr. in Stockholm 1950.Google Scholar
  601. Middlebrook, G.: Isoniazid-resistance and catalase activity of tubercle bacilli; preliminary report. Amer. Rev. Tubers. 69, 471 (1954).Google Scholar
  602. Middlebrook, G., and M. L. Cohn: Some observations on the pathogenity of isoniazid-resistant variants of tubercle-bacilli. Science 118, 297 (1953).PubMedGoogle Scholar
  603. Miles, C. P., V. R. Coleman, J. B. Gunnison and E. Jawetz: Antibiotic synergism requires the simultaneous presence of both members of a synergistic drug pair. Proc. Soc. exp. Biol. (N.Y.) 78, 738 (1951).Google Scholar
  604. Miller, C. P., and M. Bohnhoff: Studies on action of penicillin; development of penicillin resistance by gonococcus. Proc. Soc. exp. Biol. (N.Y.) 60, 354 (1945).Google Scholar
  605. Miller, C. P., and M. Bohnhoff: Studies on action of penicillin; virulence of penicillin resistant strains of meningococcus. Proc. Soc. exp. Biol. (N.Y.) 60, 356 (1945).Google Scholar
  606. Miller, C. P., and M. Bohnhoff: Two streptomycin-resistant variants of meningococcus. J. Bact. 54, 467 (1947).PubMedGoogle Scholar
  607. Miller, C. P., and M. Bohnhoff: Studies on action of penicillin; further observations on development of penicillin resistance by meningococcus in vitro. J. infect. Dis. 81, 147 (1947).PubMedGoogle Scholar
  608. Miller, C. P., and M. Bohnhoff: Development of streptomycin-resistant variants of meningococcus. Science 105, 620 (1947).PubMedGoogle Scholar
  609. Miller, C. P., and M. Bohnhoff: Studies on action of penicillin; development of penicillin resistance by meningococcus in vivo. J. infect. Dis. 83, 256 (1948).PubMedGoogle Scholar
  610. MiricK, G. S.: Enzymatic identification of p-aminobenzoic acid (Pab) in cultures of Pneumococcus and its relation to sulfonamide fastness. J. clin. Invest. 21, 628 (1942).Google Scholar
  611. Mirsky, A. E., and A. W. Pollister: Chromosin, a desoxyribose nucleoprotein complex of the cell nucleus. J. gen. Physiol. 30, 117 (1946).PubMedCentralPubMedGoogle Scholar
  612. Mirsky, A. E., and H. Ris: The desoxyribonucleic acid content of animal cells and its evolutionary significance. J. gen. Physiol. 34, 451 (1951).PubMedCentralPubMedGoogle Scholar
  613. Mitchell, H. K.: In: The chemical basis of heredity, edit. W. D. Mcelroy and B. Glass. Baltimore: John Hopkins Press 1957.Google Scholar
  614. Mitchison, D. A.: Titration of strains of tubercle bacilli against isoniazid. Lancet 1952II, 858.Google Scholar
  615. Mitchison, D. A.: The occurence of independent mutations to different types of streptomycin resistance in Bacterium coli. J. gen. Microbiol. 8, 168 (1953).PubMedGoogle Scholar
  616. Mitchison, D. A.: The ecology of tubercle bacilli resistant to streptomycin and isoniazid. In: Adaptations in microorganisms, p. 253. 3. Symposium Soc. gen. Microbiol., London 1953.Google Scholar
  617. Miyahara, B. T., K. Cariker and W. F. Clapper: Crossresistance in staphylococci and the effect of combinations of antibiotics on resistant strains. J. Lab. clin. Med. 41, 550 (1953).PubMedGoogle Scholar
  618. Molho, D., et L. Molho-Lacroix: Etude comparée de l’accoutumance de Escherichia coli la chloromycétine et à la M-sérine. C.R. Acad. Sci. (Paris) 233, 1395 (1951).Google Scholar
  619. Mitchison, D. A.: The phenomenon of enzymatic adaptation and its bearing on problems of genetics and cellular differentation. Growth 11, 223 (1947).Google Scholar
  620. Mitchison, D. A.: La synthèse de la beta-galactosidase chez les entérobactériacées. Facteurs génétiques et facteurs chimiques. Schweiz. Z. allg. Path. 15, 407 (1952).Google Scholar
  621. Mitchison, D. A., et A. Audureau: Mutation et adaptation enzymatiques chez E. coli mutabile. Ann. Inst. Pasteur 72, 868 (1946).Google Scholar
  622. Mitchison, D. A., G. Cohen-Bazire et M. Corn: Sur la biosynthèse de la beta-galactosidase (lactase) chez E. coli. La spécifité de l’induction. Biochim. biophys. Acta 7, 585 (1951).Google Scholar
  623. Mitchison, D. A., et M. CoHN: La biosynthèse induite des enzymes (adaptation enzymatique). Advanc. Enzymol. 13, 67 (1952).Google Scholar
  624. Monnier, J.: Les antibiotiques et les maladies de l’enfance, p. 201. Paris: C. I. E. 1952. —, and E. B. Schoenbach: Resultant sensitivity of microorganismus to various antibiotics after induced resistance to each of these agents. Antibiot. and Chemother. 1, 472 (1951).Google Scholar
  625. Morgan, F. G., and J. J. Groydon: Toxins of staphylococcus, with special reference to estimation of potency. J. Path. Bact. 10, 385 (1936).Google Scholar
  626. Morgan, H.: An attempt to analyze the constitution of the chromosomes on the basis of sexlimited inheritance in Drosophila. J. exp. Biol. 11, 365 (1911).Google Scholar
  627. Morgenroti, J., U. M. Kaufmann: Arzneifestigkeit bei Bakterien (Pneumokokken). Z. Immun -Forsch. 15, 610 (1912).Google Scholar
  628. Morgenroti, J., u. R. Levy: Chemotherapie der Pneumokokkeninfektion. Berl. klin. Wschr. 48, 1560 (1911).Google Scholar
  629. Morse, W. C., O. L. Weiser, D. M. Kuhns, M. H. Fusillo, M. C. Dail and J. R. Evans: Study of virulence of isoniazid-resistant tubercle bacilli in guinea pigs and mice; preliminary report. Amer. Rev. Tubers. 69, 464 (1954).Google Scholar
  630. Morton, H. E., and M. J. B. Perez: Staphylococcus aureus; drug fastness studies with penicillin and sulfactin. Proc. Soc. exp. Biol. (N.Y.) 69, 26 (1948).Google Scholar
  631. Moss, F. J., and R. Lemberg: The production of p-aminobenzoic acid by staphylococcus aureus, made resistant to sulphonamides. Aust. J. exp. Biol. med. Sci. 28, 667 (1950).PubMedGoogle Scholar
  632. Murphy, J. C., and S. Rothman: Artificially induced resistance of trichophyton gypseum to pelargonic acid. J. invest. Derm. 12, 5 (1949).PubMedGoogle Scholar
  633. Murray, R., L. Kilham, C. Wilcox and M. Finland: Development of streptomycin resistance of gram-negative bacilli in vitro and during treatment. Proc. Soc. exp. Biol. (N.Y.) 63, 470 (1946).Google Scholar
  634. Nadel, E. M., J. Greenberg and G. E. Jay: Back-cross studies on the genetics of resistance to malaria in mice. Genetics 40, 620 (1955).PubMedGoogle Scholar
  635. Naito, H.: Studies on the mode of action of antibiotics. II. J. Antibiot. 5, 404 (1952).Google Scholar
  636. Naito, H.: T., u. S. Oka: Untersuchung über die Festigkeit von Trypanosomen gegen Arsenpräparate. Zbl. Bakt., I. Abt. Orig. 137, 401 (1936).Google Scholar
  637. Neisser, L. M.: Ein Fall von Mutation nach de Vries bei Bakterien and anderen Demonstrationen. Zbl. Bakt., I. Abt. Ref. 38, 98 (1906).Google Scholar
  638. Neumayer, R. B., P. Z. Morse and W. C. Morse: Relationship between isoniazid resistance, endogenous catalase activity and guinea pig pathogenicity of Mycobacterium tuberculosis. Proc. Soc. exp. Biol. (N.Y.) 89, 468 (1954).Google Scholar
  639. Newcombe, H. B.: Delayed phenotypic expression of spontaneous mutations in E. coli. Genetics 33, 447 (1948).Google Scholar
  640. Newcombe, H. B.: Origin of bacterial variants. Nature (Lond.) 164, 150 (1949).Google Scholar
  641. Newcombe, H. B.: Spontaneous and induced mutations to drug resistance in E. coli. In: Origins of resistance to toxic agents, edit. M. G. Sevag, R. D. Reid and D. E. Reynolds. New York: Academic Press 1955. (Proc. of the Symp. hold in Wash. 25.-27. 3. 1954.)Google Scholar
  642. Newcombe, H. B., and R. HAwIrko: Spontaneous mutation to streptomycin-resistance and dependence in E. coli. J. Bact. 57, 565 (1949).Google Scholar
  643. Newcombe, H. B., and J. Mcgregor: On the non-adaptive nature of changes to full streptomycin resistance in Escherichia coli. J. Bact. 62, 539 (1951).PubMedGoogle Scholar
  644. Newcombe, H. B., and M. H. Nyholm: The inheritance of streptomycin: resistance and dependence in crosses of E. coli. Genetics 35, 603 (1950).Google Scholar
  645. Newcombe, H. B., and H. A. Whitehead: Photoreversal of ultraviolet-induced mutagenic and lethal effects in E. coli. J. Bact. 61, 243 (1951).Google Scholar
  646. Nichols, R. L., and M. Finland: Novobiocin; a limited bacteriologic and clinical study of its use in forty-five patient. Antibiot. Med. 2, 241 (1957).Google Scholar
  647. North, E. A., and R. Christie: Acquired resistance of staphylococci to action of penicillin. Med. J. Aust. 1, 176 (1946).PubMedGoogle Scholar
  648. Novick, A., and L. Szilard: Experiments on light-reactivations of ultra-violet inactivated bacteria. Proc. nat. Acad. Sci. (Wash.) 35, 591 (1949).Google Scholar
  649. Novick, A., and L. Szilard: Experiments with the chemostat on spontaneous mutations of bacteria. Proc. nat. Acad Sci. (Wash.) 36, 708 (1950).Google Scholar
  650. Novick, A., and L. Szilard: Experiments on spontaneous and chemically induced mutations of bacteria growing in the chemostat. Cold Spr. Harb. Symp. quant. Biol. 16, 337 (1951).Google Scholar
  651. Novick, A., and L. Szilard: Antimutagens. Nature (Lond.) 170, 926 (1952).Google Scholar
  652. Nyberg, O.: Mutationserscheinungen bei einem Aerobakterstamm. Zbl. Bakt., I. Abt. Orig. 142, 178 (1938).Google Scholar
  653. Oakberg, E. F., and S. E. Luria: Mutations to sulfonamide resistance in Staphylococcus aureus. Genetics 32, 249 (1947).Google Scholar
  654. Oeding, P.: Staphylococci studies in hospital staffs. IV. Serological investigation. Acta path. microbiol. scand. 34, 34 (1954).PubMedGoogle Scholar
  655. Ogur, M., S. Minckler, G. Lindegren and C. C. Lindegren: The nucleic acids in a polyploid series of saccharomyces. Arch. Biochem. 40, 175 (1952).PubMedGoogle Scholar
  656. Olitzki, A. L., and Z. Olitzki: Pathogenicity and antigenicity of streptomycin dependent mutants of Vibrio comma (types: Inaba and Ogawa). Exp. Med. Surg. 13, 332 (1955).PubMedGoogle Scholar
  657. Olitzki, A. L., and E. Szenberg: Toxicity, infectivity and Antigenicity of a streptomycin dependent mutant of Brucella abortus (Strain 19). Proc. Soc. exp. Biol. (N.Y.) 82, 539 (1953).Google Scholar
  658. Ormerod, W. E.: A study of resistance to antrycide in as train of trypanosoma equiperdum. Brit. J. Pharmacol. 7, 674 (1952).PubMedGoogle Scholar
  659. Ortel, S.: Die Phagentypen bei penicillin-empfindlichen, penicillin-resistenten und mehrfach antibiotika-resistenten Staphylokokken. Zbl. Bakt., I. Abt. Orig. 171, 44 (1958).Google Scholar
  660. Oswald, E. I., and H. Welch: Antibiotic combinations. Iii. In vitro effects of oleandomycin-tetracycline on two hundred and two cultures of M. pyogenes var. aureus. Antibiot. Ann 751 (1958).Google Scholar
  661. Pagano, J. F., M. J. Weinstein and R. Donovick: Cross-resistance studies with streptomycin, streptothricin, neomycin, and streptolin (19378). Proc. Soc. exp. Biol. (N.Y.) 79, 359 (1952).Google Scholar
  662. Page, L. A., R. J. GooDlow and W. Braun: The effects of threonine on population changes and virulence of Salmonella typhi murium. J. Bact. 62, 639 (1951).PubMedGoogle Scholar
  663. Paine jr., T. F., and M. Finland: Observations on bacteria sensitive to, resistant to and dependent upon streptomycin. J. Bact. 56, 207 (1948).Google Scholar
  664. Paine jr., T. F., and M. Finland: Streptomycin-sensitive, -dependent, and -resistant bacteria. Science 107, 143 (1948).Google Scholar
  665. Pakula, R., F. Rabczynska u. K. IwAnska: Epid. Rundschau (poln.) 19, 1956. Zit.Google Scholar
  666. S. Ortel, Die Phagentypen bei penicillinempfindlichen, penicillinresistenten und mehrfach antibiotikaresistenten Staphylokokken. Zbl. Bakt., I. Abt. Orig. 171, 44 (1958).Google Scholar
  667. Pansy, F. E., P. Khan, J. F. Pagano and R. DonovIck: Relationship between aureomycin, chloramphenicol, and terramycin. Proc. Soc. exp. Biol. (N.Y.) 75, 618 (1950).Google Scholar
  668. Parker, M. T., and S. P. LAvAge: Penicillinase production by staphylococcus aureus strains from outbreaks of food poisoning J. clin. Path. 10, 313 (1957).PubMedGoogle Scholar
  669. Parr, L. W., and M. L. Robbins: The concept of stabilty and some of its implications. J. Bact. 43, 661 (1941).Google Scholar
  670. Pasynskii, A., and T. Kastorskaya: The physico chemical mechanism of action of penicillin. Biokhimiya (1947).Google Scholar
  671. Peizer, L., and D. Widelock: Colorimetric test for measuring catalase activity of cultures of M. tuberculosis. Amer. Rev. tuberc. 71, 305 (1955).Google Scholar
  672. Peizer, L., and D. Widelock: Correlation of rate of catalase activity, guinea pig virulence, and isoniazid resistance of tubercle bacilli from specimens of patients under isoniazid therapy. Amer. Rev. Tuberc. 72, 246 (1955).Google Scholar
  673. Peizer, L., and D. Widelock: and S. Klein: Effect of isoniazid on viability of isoniazid susceptible and isoniazid- resistant cultures of Mycobacterium tuberculosis. Amer. Rev. Tuberc. 69, 1022 (1954).Google Scholar
  674. Peizer, L., and D. Widelock: A. Minkin and S. Widelock: Further study of virulence in guinea pigs of isoniazidresistant tubercle bacilli isolated from clinical material. A.er. Rev. Tuberc. 70, 728 (1954).Google Scholar
  675. Perret, C. J.: Penicillinase adaptation in multiplying cultures of Bacillus cereus maintained at constant population density. VI. Internat. Kongr. für Mikrobiologie in Rom 1953. Riassunti delle Communicazioni vol. I.Google Scholar
  676. Perry, H. O., and J. A. Ulrich: Laboratory studies on endomycin. J. invest. Derm. 24, 623 (1955).PubMedGoogle Scholar
  677. Peterson, E. A., and H. A. Sober: Chromatography of proteins. I. Cellulose Ion-exchange adsorbents. J. Amer. chem. Soc. 78, 751 (1956).Google Scholar
  678. Pfeiffer, C. C., and A. L. Tatum: New experimental approuch to study the role of reticuloendothelial system in cure of trypanosomiasis. J. Pharmacol. exp. Ther. 53, 358 (1935).Google Scholar
  679. Piekarski, G.: Cytologische Untersuchungen an Paratyphus-und Coli-Bakterien. Arch. Mikrobiol. 8, 428 (1937).Google Scholar
  680. Piekarski, G.: Zum Problem des Bakterienzellkerns. Ergebnisse der Hygiene, Bakteriologie. Z. Immun-Forsch. 26, 333 (1949).Google Scholar
  681. Piekarski, G. Blepharoblast und Trypaflavinwirkung bei Trypanosoma brucei. Zbl. Bakt., I. Abt., Orig. 153, 190 (1949).Google Scholar
  682. Piekarski, G. Die Zellkernaequivalenz der Bakterien. In: Mikroskopische und chemische Organisation der Zelle. 2. Colloquium der Dtsch. Ges. für Physiol. Chemie am 6. u. 7. April 1951 in Mosbach i. Baden. Berlin-Göttingen-Heidelberg: Springer 1952.Google Scholar
  683. Pledger, R. A., and H. Lechevalier: Study of cross resistance between mild silver protein and antibiotics. Antibiot. and Chemother. 6, 120 (1956).Google Scholar
  684. Plough, H. H., and M. R. Grimm: Reversal to Pc-sensitivity in a cystein — requiring mutant of Salmonella. Science 109, 173 (1949).PubMedGoogle Scholar
  685. Pollock, M.: Penicillinase-adaptation in B. cereus: Adaptive enzyme formation in the absence of free substrates. B.it. J. exp. Path. 31, 739 (1950).Google Scholar
  686. Pollock, M.: Penicillinase adaptation in bacillus cereus: an analysis of three phases in the response of logarithmically growing cultures to induction of penicillinase formation by penicillin. Brit. J. exp. Path. 33, 587 (1952).PubMedGoogle Scholar
  687. Pollock, M.: Stages in enzyme adaptation, p. 150. In: Adaptation in microorganisms. 3. Symp. of the Soc. for Gen. Microbiology. Cambridge: Chambridge University Press 1953.Google Scholar
  688. Pollock, M.: The activity and specifity of inducers of penicillinase production in Bac. cereus, strain Nrrl-569. Biochem. J. 66, 419 (1957).PubMedGoogle Scholar
  689. Pollock, M.: In: The enzymes. New York: Academic Press 1958/59.Google Scholar
  690. Pollock, M., and J. Mandelstam: Possible mechanisms by which information is conveyed to the cell in enzyme induction. Symp. Soc. exp. Biol. 12, 195 (1958).PubMedGoogle Scholar
  691. Pollock, M., and C. J. Perret: Relation between fixation of penicillin sulphur and penicillinase adaptation in B. cereus. B.it. J. exp. Path. 32, 27 (1951).Google Scholar
  692. Pollock, M., and A. M. Torriani: Zit. M. R. PoLlocx, Stages in enzyme adaptation. In: Adaptation in microorganisms. 3. Symp. of the Soc. for Gen. Microbiology. Cambridge: Cambridge University Press 1953.Google Scholar
  693. Pontecorvo, G.: Genetic formulation of gene structure and gene action. Advanc. Enzymol. 13, 121 (1952).Google Scholar
  694. Pontecorvo, G.: Allelism. Cold Spr. Harb. Symp. quant. Biol. 21, 171 (1956).Google Scholar
  695. Pontecorvo, G.: Self-reproduction and all that. Symp. Soc. exp. Biol. 12, 1 (1958).PubMedGoogle Scholar
  696. Pontecorvo, G., and J. A. Roper: Resolving power of genetic analysis. Nature (Lond.) 178, 83 (1956).Google Scholar
  697. Powell, H. M., and W. A. Jamieson: Response of sulfonamido-fast pneumococci to penicillin. Proc. Soc. exp. Biol. (N.Y.) 49, 387 (1942).Google Scholar
  698. Pratt, D., O. Wyss and W. C. Scrorlemer: A method for measuring mutagenic action. J. gen. Microbiol. 11, 333 (1954).PubMedGoogle Scholar
  699. Presinger, M.: Zum Problem der Antibiotika-Resistenz. Arch. Hyg. (Berl.) 140, 281 (1956).Google Scholar
  700. Price, C. W., W. A. Randall, V. L. Chandler and R. J. Reedy: Observations on in vivo and in vitro development of bacterial resistance to streptomycin. J. Bact. 53, 481 (1947).Google Scholar
  701. Pritchard, R. H.: The linear arrangement of a series of alleles of aspergillus nidulans. Heredity 9, 343 (1955).Google Scholar
  702. Probey, T. F.: Attempt to produce arsenic-resistant strain of Spirochaeta pallida in experimental syphilis. Publ. Hlth Rep. (Wash.) 63, 1654 (1948).Google Scholar
  703. Probey, T. F.: Attempt to produce penicillin-resistant strain of Treponema pallidum in experimental syphilis. Amer. J. Syph. 37, 369 (1953).Google Scholar
  704. Provasoli, L., S. H. Hutner and I. J. Pintner: Destruction of chioroplasts by streptomycin. Cold Spr. Harb. Symp. quant. Biol. 16, 113 (1951).Google Scholar
  705. Pulst, A.: Die Widerstandsfähigkeit einiger Schimmelpilze gegen Metallgifte. Inaug.-Diss. Erlangen 1902. Jb. Bot. 37, 205 (1902).Google Scholar
  706. Purcell, E. M., S. S. Wright and M. Finland: Antibiotic combinations and resistance to antibiotics. Penicillin, erythromycin and streptomycin-erythromycin combinations in vitro. Proc. Soc. exp. Biol. (N.Y.) 82, 124 (1953).Google Scholar
  707. Rajam, P. C., and J. D. Adcocx: Induced resistance of staphylococci to carbomycin and erythromycin. Univ. Mich. med. Bull. 19, 212 (1953).PubMedGoogle Scholar
  708. Rake, G., C. M. Mckee, D. M. Hamre and C. L. Henck: Studies on penicillin observations on therapeutic activity and toxicity. J. Immunol. 48, 271 (1944).Google Scholar
  709. Ramsey, H. H.: Influence of temperature on inhibition of micrococcus pyogenes by chloramphenicol. J. Bact. 73, 689 (1957).PubMedGoogle Scholar
  710. Ramsey, H. H., and J. L. Padron: Altered growth requirements accompanying chloramphenicol resistance in micrococcus pyogenes var. aureus. Antibiot. and Chemother 4, 537 (1954).Google Scholar
  711. Rangam, C. M., and S. M. Katdare: Phosphatase activity of staphylococci as indication of their pathogeneity. Indian J. med. Sci. 8, 610 (1954).Google Scholar
  712. Rante, L. A., and W. M. M. Kirby: Action of penicillin on staphylococcus in vitro. J. Immunol. 48, 335 (1944).Google Scholar
  713. Rante, L. A., and E. Randall: Antibiotic synergism and Staph. aureus. Antibiot. and Chemother. 2, 645 (1952).Google Scholar
  714. Ravin, A. W.: Diskussionsbem. zu A. C. R. Dean and C. Hinshelwood, Observations on bacterial adaptation, p. 21. In: Adaptation in microorganisms. 3. Symp. of the Soc. for gen. Microbiology, 1953.Google Scholar
  715. Ravin, A. W.: The nature of variations affecting bacterial adaptability, p. 46. In: Adaptation in microorganisms. 3. Symp. of the Soc. for gen. Microbiology 1953.Google Scholar
  716. Reale, M., A. Garaventa and M. Ghione: Reaction of Mycobacterium tuberculosis to isoniazid. J. Amer. med. Ass. 151, 336 (1953).Google Scholar
  717. Reed, G. B.: Independent variation of several characteristics in S. marcescens. J. Bact. 34, 255 (1937).PubMedGoogle Scholar
  718. Reedy, R. I., E. J. Oswald and W. W. Wright: The effect of gamma globulin and specific antiserum combined with antibiotics in experimental infections in mice. Antibiot. Ann 581 (1958).Google Scholar
  719. Reiman, H. A.: Significance of bacterial variation; micrococcus tetragenes infection. J. Bact. 33, 513 (1937).Google Scholar
  720. Ris, H.: In: The chemical basis of heredity, edit. Mcelroy and Glass. Baltimore: John Hopkins Press 1957.Google Scholar
  721. Ritzerfeld, W.: Untersuchungen über die Resistenzwerte von Mikroorganismen bei unterschiedlichen Wachstumsbedingungen. Arch. Hyg. (Berl.) 139 332 (1955).Google Scholar
  722. Robbins, W. C., and R. Tompsett: Treatment of enterococcal endocarditis and bacteremia. Results of combined therapy with penicillin and streptomycin. Amer. J. Med. 10, 278 (1951).PubMedGoogle Scholar
  723. Roberts, R. B., and E. Aldous: Manganese metabolism of Escherichia coli as related to its mutagenic action. Cold Spr. Harb. Symp. quant. Biol. 16, 229 (1951).Google Scholar
  724. RoBiNovu, C. F.: A study of the nuclear apparatus of bacteria. Proc. roy. Soc. B 130, 299 (1942).Google Scholar
  725. RoBitzek, E. H., I. J. Selihoff and G. G. Ornstein: Chemotherapy of human tuberculosis with hydrazine derivates of isonicotinic acid. Quart. Bull. Sea View Hosp. 13, 27 (1952).Google Scholar
  726. Rogers, D. E.: The current problem of staphylococcal infections. Ann. intern. Med. 45, 748 (1956).PubMedGoogle Scholar
  727. Roland, F., and C. A. Stuart: Some serologic studies of strains of enterobacteriaceae resistant to streptomycin and to enterin. Antibiot. and Chemother. 1, 530 (1951).Google Scholar
  728. Rollo, I. M.: A 2:4-Diaminopyrimidine on the treatment of proguanil resistant laboratory malarial strains. Nature (Lond.) 168, 332 (1951).Google Scholar
  729. Rollo, I. M.: Doraprim resistance in experimental malarial infection. Nature (Lond.) 170, 415 (1952).Google Scholar
  730. Rollo, I. M., and J. Williamson: Acquired resistance to melarsen. Tryparsamide and amidine in pathogenic trypanosomes after treatment with melarsen alone. Nature (Lond.) 167, 147 (1951).Google Scholar
  731. Rollo, I. M., and J. Williamson: Acquired resistance to penicillin and to neoarsphenamine in Spirochaeta recurrentis. Brit. J. Pharmacol. 7, 33 (1952).PubMedGoogle Scholar
  732. Rosanoff, E. I., and M. G. Sevag: The role of amino acids in the development of resistance to streptomycin. Bact. Proc. 56 (1951).Google Scholar
  733. Rosanoff, E. I., and M. G. Sevag: Alternate metabolic pathways in streptomycin sensitive and resistant strains of Escherichia coli. Antibiotics and Chemother. 3, 495 (1953).Google Scholar
  734. Roskam, J. G.: Pouvoir lysogène de staphylococcus aureus et streptomycino-résistance. C.R. Soc. Biol. (Paris) 145, 1880 (1951).Google Scholar
  735. Rothfels, K. H.: Gene linearity and negative interference in crosses of Escherichia coli. Genetics 37, 297 (1952).PubMedGoogle Scholar
  736. Rountree, PH. M.: Bacteriophage typing of strains of staphylococci isolated from Australia. Lancet 19531, 514.Google Scholar
  737. Rountree, PH. M. and R. C. H. Barbour: Staph. aureus in new-born babies in a maternity hospital. Med. J. Aust. 1, 525 (1950).PubMedGoogle Scholar
  738. Rountree, PH. M. and R. C. H. Barbour: Nasal carrier rates of staphylococcus pyogenes in hospital nurses. J. Path. Bact. 63, 313 (1951).PubMedGoogle Scholar
  739. Rountree, PH. and E. T. Thompson: Incidence of penicillin-resistant and streptomycin-resistant staphylococci in a hospital. Lancet 1949II, 501.Google Scholar
  740. Rowley, D., P. D. Cooper, P. W. Roberts and E. Lester-Smith: The site of action of penicillin I: uptake of penicillin in bacteria. Biochem. J. 46, 157 (1950).PubMedGoogle Scholar
  741. Rowley, D., J. Miller, S. Rowlands and E. L. Smith: Studies with radioactive penecillin. Nature (Lond.) 161, 1009 (1948).Google Scholar
  742. Roy, T. E.: Titration of alpha and beta-haemolysins in staphylococcal toxin. J. Immunol. 33, 437 (1937).Google Scholar
  743. Rudolph, W.: Wuchsstoffe und Antiwuchsstoffe. Ein Beitrag zum Stoffwechsel der Mikroorganismen. Beiheft z. Internat. Z. Vitaminforsch., Nr 5. Bern: H. Huber 1948.Google Scholar
  744. Ryan, F. J.: Adaptation to use lactose in E. coli. J. gen. Microbiol. 7, 69 (1952).Google Scholar
  745. Sakai, T., and S. IsEki: Artificial transformation of 0-Antigens in Salmonella E. group Iii-Physicochemical properties of antigentransforming factor in bacilli of subgroup E2. Gunma J med. Sci. 2, 235 (1953).Google Scholar
  746. Sanford, J. P., B. E. Hatten and J. S. Fordtran: Effectiveness of novobiocin and cycloserine on nocardia asteroides, preliminary evaluation in vitro and in vivo. Antibiot. Ann. 22 (1958).Google Scholar
  747. Schaeffer, P.: Transformation interspécifique chez des bactéries du genre hemophilus. Ann. Inst. Pasteur 91, 192 (1956).Google Scholar
  748. Schaeffer, P.: La pénétration de l’acide nucléique dans les bactéries réceptrices au cours des transformations interspécifiques. C.R. Acad. Sci. (Paris) 245, 375 (1957).Google Scholar
  749. Schaeffer, P.: L’inhibition de la transformation comme moyen de mesure de la „compétence“ bactérienne. C.R. Acad. Sci. (Paris) 245, 451 (1957).Google Scholar
  750. Schaeffer, P.: Existence d’une compétition entre molécules d’acides désoxyribonucléiques pour la pénétration dans les bactéries transformables. C. R. Acad. Sci. (Paris) 245, 230 (1957).Google Scholar
  751. Schaeffer, P.: The biological replication of macromolecules. N.Y. Acad. Press. Interspecific reactions in bacterial transformation. Symp. Soc. exp. Biol. 12, 60 (1958).Google Scholar
  752. Schaeffer, P., et E. Ritz: Transfer interspécifique d’un caractère héréditaire chez des bactéries du genre hemophilus. C.R. Acad. Sei. (Paris) 240, 1491 (1955).Google Scholar
  753. Schall, L., B. Warnecke u. H. H. Wernicke: Resistente Staphylokokken in einer Kinderklinik und ihre Bekämpfung. Minch. med. Wschr. 1957, 913.Google Scholar
  754. Schepartz, S. A., and M. J. Johnson: The nature of the binding of penicillin by bacterial cells. J. Bact. 71, 89 (1956).Google Scholar
  755. Schlossberger, H.: Diskussionsbemerkung. Zbl. Bakt., I. Abt. Orig. 155, 75 (1950).Google Scholar
  756. Schmidt, B., u. V. Lenk: Beobachtungen über die Beziehungen zwischen Antibiotika-Resistenz und Phagenbild bei pathogenen Staphylokokken. Zbl. Bakt., I. Abt. Orig. 171, 590 (1958).Google Scholar
  757. Schmidt, B., L. H., C. S. Genther, R. Fradkin and W. Squires: Development of resistance to chlorguanide (paludrine) during treatment of infections with Plasmodium cynomolgi. J. Pharmacol. exp. Ther. 95, 382 (1949).PubMedGoogle Scholar
  758. Schmidt, B., and C. L. Sesler: Development of resistance to penicillin by pneumococci. Proc. Soc. exp. Biol. (N.Y.) 52, 353 (1943).Google Scholar
  759. Schmidt, B., and C. L. Sesler: Studies on sulfonamide-resistant organisms; on origin of sulfonamide-resistant pneumococci. J. Pharmacol. exp. Ther. 77, 165 (1943).Google Scholar
  760. Schmidt, B., and C. L. Sesler and H. A. Dettwiler: Studies on sulfonamide-resistant organisms; development of sulfapyridine resistance by pneumococci. J. Pharmacol. exp. Ther. 74, 175 (1942).Google Scholar
  761. Schnitzer, R.: Die spezifische Arzneifestigkeit der pathogenen Mikroorganismen. Ergebn. Hyg. Bakt. 13, 227 (1932).Google Scholar
  762. Schnitzer, R., R. J.: Mechanism of the origin of resistance to drugs in Protozoa. In: Origins of resistance to toxic agents. Proc. of the Symp. Wash. 25.-27. 3. 1954. edit. M. G. Sevag, R. D. Reid and O. E. Reynolds. New York: Academic Press 1955.Google Scholar
  763. Schnitzer, R. J., and E. Grunberg: Drug resistance of microorganisms. New York: Academic Press 1957.Google Scholar
  764. Schnitzer, R. J., and D. R. Kelly: Comparison of 2 different antagonists as inhibitors of acriflavine fastness of trypanosomes. J. Immunol. 64, 95 (1950).Google Scholar
  765. Schnitzer, R. J., L. C. Lafferty and M. Buck: Role of antibodies in experimental drug resistance of trypanosoma equiperdum. J. Immunol. 54, 47 (1946).PubMedGoogle Scholar
  766. Schnitzer, R. J., u. E. Rosenberg: Zit. R. Schnitzer, Die spezifische Arzneifestigkeit der pathogenen Mikroorganismen. Ergebn. Hyg. Bakt. 13, 227 (1932).Google Scholar
  767. Schueler, F. W., G. Chen and E. M. K. Geiling: Mechanism of drug resistance in trypanosomes; method for differentiating strains of resistant trypanosomes. J. infect. Dis. 81, 14 (1947).PubMedGoogle Scholar
  768. Schultz, J.: The nature of heterochromatin. Cold Spr. Harb. quant. Biol. 12, 179 (1947).Google Scholar
  769. Schumacher, A., and R. J. Schnitzer: Cross resistance of butarsen fast strains of T. equiperdum. Arch. int. Pharmacodyn. 107, 368 (1956).Google Scholar
  770. Schwabagher, H., A. C. Cunliffe, R. E O Williams and G. J. Harper: Hyaluronidase production by staphylococci. Brit. J. exp. Path. 26, 124 (1945).Google Scholar
  771. Scopes, A. W., and C. N. Hinshelwood: Multiple adaptations of Bact. lactic aerogenes (Aerobacter aerogenes) to various combinations of substrate. J. them. Soc. 1952, 1838.Google Scholar
  772. Scott, G. W.: Spontaneous mutation to streptomycin resistance in Escherichia coli. Brit. J. exp. Path. 30, 501 (1949).PubMedGoogle Scholar
  773. Seaton, D. R., and E. M. Lourie: Acquired resistance to proguanil (paludrine) in Plasmodium vivax. Lancet 1949I, 394.Google Scholar
  774. Seiffert, W.: Bakterielle Mutation. Zbl. Bakt., I. Abt. Ref. 121, 143 (1936).Google Scholar
  775. Selbie, F. R., and R. D. Simon: Virulence to mice of staphylococcus pyogenes: its measurement and its relation to certain in vitro properties. Brit. J. exp. Path. 33, 315 (1952).PubMedGoogle Scholar
  776. Seneca, H.: In vitro acquired resistance and sensitivity of Entamoeba histolytica to oxytetracycline. J. Lab. clin. Med. 43, 713 (1954).PubMedGoogle Scholar
  777. Seppilli, A.: Parasitism and differentiation in facultative parasitic bacteria. 3. Internat. Congr. Microbiol., New York. Abstracts 162, 10 (1939).Google Scholar
  778. Sesler, C. L., and L. H. Schmidt: Studies on sulfonamide-resistant organisms; comparative development of resistance to different sulfonamide by pneumococci. J. Pharmacol. exp. Ther. 75, 356 (1942).Google Scholar
  779. Sevag, M. G.: Protein molecule, resistance to microbicides, mutations and related problems. In: Origins of resistance to toxic agents. Proc. of the Symp., held in Wash. 25.-27. 3. 1954, edit. M. G. Sevag, R. D. Reid and O. E. Reynolds. New York: Academic Press 1955.Google Scholar
  780. Sevag, M. G., and J. S. Gots: Enzymatic studies of the mechanism of the resistance of pneumococcus to drugs. II. The inhibition of dehydrogenase activities by drugs; antagonistic effects of Riboflavin to inhibitions. J. Bact. 56, 723 (1948).Google Scholar
  781. Sevag, M. G., and J. S. Gots: Enzymatic studies on the mechanisms of the resistance of pneumococcus to drugs. Iii. Experimental results indicating alteration in enzyme protein associated with the development of reistance to drugs. J. Bact. 56, 737 (1948).Google Scholar
  782. Sevag, M. G., and J. S. Gots, R. D. Reid and O. E. Reynolds: Origins of resistance to toxic agents. New York: Academic Press 1955.Google Scholar
  783. Sevag, M. G., and E. J. Rosanoff: Mechanism of the development of resistance to streptomycin. I. Origin of resistant strains. J. Bact. 63, 243 (1952).PubMedGoogle Scholar
  784. Sevag, M. G. and G. J. Haas: Critical role of nutritional environment on the sensitivity and development of resistance to drugs. VI. Internat. Kongr. für Mikrobiologie in Rom 1953. Riassunti delle Communicazioni vol. I.Google Scholar
  785. Sevag, M. G., and E. Steers: Mechanism of resistance to sulfonamides; quantitative study of alternate metabolic pathways involving tryptophan and glucose metabolism, and aerobic and anaerobic growth conditions in relation to mechanism of resistance. Arch. Biochem. 24, 144 (1949).PubMedGoogle Scholar
  786. Shaffer, J. G., and J. E. Washington: Failure of 2 strains of endamoeba histolytica to develop resistance to amoebacidal agents in vitro. Proc. Soc. exp. Biol. (N.Y.) 80, 63 (1952).Google Scholar
  787. Shaffer, J. M., C. J. Kucera, and W. W. Spink: Evaluation of prolonged antibiotic therapy in mice with chronic brucella infection due to Brucella melitensis. J. Immunol. 70, 31 (1953).PubMedGoogle Scholar
  788. Sherman, J. M., and H. K. Wing: Attemps to reveal sex in bacteria with some light on fermentative variability in coli-aerogenes group. J. Bact. 33, 315 (1937).PubMedGoogle Scholar
  789. Shive, W.: The utilization of antimetabolites in the study of biochemical processes in living organisms. Ann. N.Y. Acad. Sci. 52, 1212 (1950).PubMedGoogle Scholar
  790. Shooter, K. V., and J. A. V. Butler: Apparent heterogenicity of deoxyribonucleic acid: Sedimentation experiments at low concentrations. Nature (Lond.) 175, 500 (1955).Google Scholar
  791. Shwartzman, G.: Studies on the nature of resistance of gram-neg. bacilli to penicillin. - Antagonistic and enhancing effects of amino acids. J. exp. Med. 83, 65 (1946).PubMedCentralGoogle Scholar
  792. Siebert, G.: Untersuchungen zur Biochemie des Wachstums and der Zellteilung. Habil.- Schr. Mainz 1951.Google Scholar
  793. Siebert, G.:Der Zellkern der somatischen Zelle. In: Chemie der Genetik. 9. Colloquium der Ges. für Physiol. Chemie am 17. u. 19. April 1958 in Mosbach i. Baden. Berlin-Göttingen-Heidelberg: Springer 1959.Google Scholar
  794. Silver, H. K., and C. H. Kempe: Resistance to streptomycin; study of mechanisms in its development. J. Immunol. 57, 263 (1947).PubMedGoogle Scholar
  795. Siminoff, P.: Development of bacterial resistance to streptomycin. J. Bact. 78, 79 (1959).Google Scholar
  796. Sing, T. B.: Acquired resistance to fatty acids and sulfanilamide of certain trichophyton-strains. Dermatologica 99, 231 (1949).Google Scholar
  797. Stu, R. G. H.: Microbial decomposition of cellulose. New York: Reinhold Publ. Corp. 1951.Google Scholar
  798. Stu, R. G. H., and M. H. Dawson: In vitro transformation of pneumococcal types. II. The nature of the factor responsible for the transformation of pneumococcal types. J. exp. Med. 54, 701 (1931).Google Scholar
  799. Slonimski, P. P.: A specific relation between enzymic adaptation and cytoplasmic mutation. Symp. Soc. gen. Microbiol. (Lond.) 3, 76 (1953).Google Scholar
  800. Smellie, R. M. S., A. H. Mcardle, H. M. Keir and J. N. Davidson: The incorporation of (4–3H) Thymidine and (8–14C)adenine in to Dna by particle-free extracts of mammalian cells. Biochem. J. 69, 37 (1958).Google Scholar
  801. Smith, M. L., and S. A. Price: Staphylococcus haemolysin. J. Path. Bact. 10, 379 (1938).Google Scholar
  802. Smith, M. L., and W., J. H. Hale and M. M. Smith: The role of coagulase in staphyloc. infections. Brit. J. exp. Path. 28, 57 (1947).PubMedGoogle Scholar
  803. Smolens, J., and A. B. Vona’: Studies on antibiotic resistance and the nucleic acid content of bacteria. J. Bact. 66, 140 (1953).PubMedGoogle Scholar
  804. Sheath, P. H. A.: Proof of the spontaneity of a mutation to penicillinase production in Bacillus cereus. J. gen. Microbiol. 13, 561 (1955).Google Scholar
  805. Sonneborn, T. M.: The determination of hereditary antigenic differences in genically identical paramecium cells. Proc. nat. Acad. Sci. (Wash.) 34, 413 (1948).Google Scholar
  806. Sonneborn, T. M.: Beyond the gene-two years later. Sci. Prog., Vii. ser. 167 (1951).Google Scholar
  807. Sparrow, A. H., and F. M. Rosenfeld: X-Ray-induced depolymerisation of thymonucleohistone and of sodium thymonucleate. Science 104, 245 (1946).Google Scholar
  808. Speck, R. S., and E. Jawetz: Antibiotic synergism and antagonism in a subacute experimental streptococcus infection in mice. Amer. J. med. Sci. 223, 280 (1952).PubMedGoogle Scholar
  809. Speck, R. S., and J. B. Gunnison: Studies on antibiotic synergism and antagonism. The interference of aureomycin or terramycin with the action of penicillin in infections in mice. A.M.A. Arch. intern. Med. 88, 168 (1951).Google Scholar
  810. Spicer, S.: Study of sulfapyridine resistance in pneumococci. J. Bact. 50, 23 (1945).PubMedGoogle Scholar
  811. Spicer, S.: Bacteriologic studies of the newer antibiotics. Effect of combined drugs on microorganisms. J. Lab. clin. Med. 36, 183 (1950).PubMedGoogle Scholar
  812. Spiegelman, S.: In: The enzymes. Modern aspects of enzymatic adaptation, Kpl. 6, edit. by J. B. Sumner and K. Myrback. New York: Acedemic Press 1950.Google Scholar
  813. Spiegelman, S.: The particulate transmission of enzyme-forming capacity in yeast. Cold Spr. Harb. Symp. quant. Biol. 16, 87 (1951).Google Scholar
  814. Spies, Tom Douglas: Experiences with folic acid. Chicago 1947.Google Scholar
  815. Spink, W. W., and V. Ferris: Penicillin-resistant staphylococci; mechanisms involved in development of resistance. J. clin. Invest. 26, 379 (1947).PubMedCentralPubMedGoogle Scholar
  816. Spink, W. W., W. H. Hall and V. Ferris: Clinical significance of staphylococci with natural or acquired resistance to the sulphonamides and to penicillin. J. Amer. med. Ass. 128, 555 (1945).Google Scholar
  817. Spink, W. W., and R. Magoffin: Follow up study of therapy in 48 culturally proved cases of brucellosis: streptomycin and sulfadiazine, aureomycin and chloramphenicol (chloromycetin). A. M. A. Arch. Intern. Med. 88, 419 (1951).Google Scholar
  818. Spink, W. W., J. J. Vivixo: Pigment production by sulfonamide-resistant staphylococci in the presence of sulfonamides. Science 98, 44 (1943).PubMedGoogle Scholar
  819. Spitzy, K. H., and G. Hitzenberger: The distribution volume of some antibiotics. Antibiot. Ann. 996 (1958).Google Scholar
  820. Stacey, M.: Blackwell scientific publications. The nature of the bacterial surface (Miles and Pirie, eds.), p. 29. Oxford 1949.Google Scholar
  821. Stanier, R. Y.: Simultaneous adaptation: a new technique for the study of metabolic pathways. J. Bact. 54, 339 (1947).PubMedGoogle Scholar
  822. Stanier, R. Y.: Enzymatic adaptation in bacteria. Ann. Rev. Microbiol. 5, 35 (1951).Google Scholar
  823. Stanier, R. Y.: The bacterial oxydation of aromatic compounds. Symp. sur le métabolisme microbien, p. 64. II. Congr. Internat. de Biochimie, Paris, 1952.Google Scholar
  824. Steenken jr., W., and E. W.Linsky: Streptomycin in experimental tuberculosis… Response in guinea pigs infected with strains of varying degrees of streptomycin resistance. Amer. Rev. Tuberc. 58, 353 (1948).Google Scholar
  825. Stanier, R. Y.: Virulence of tubercle bacilli recovered from patients treated with isoniazid. Amer. Rev. Tuberc. 68, 548 (1953).Google Scholar
  826. Steers, E., and M. G. Sevag: Mechanism of resistance to sulfonamides; comparative study of amino acid metabolism of staphylococcus aureus in relation to mechanism of resistance. Arch. Biochem. 24, 129 (1949).PubMedGoogle Scholar
  827. Stempen, H.: Cell fusion in proteus vulgaris. Bact. Proc. 15 (1950).Google Scholar
  828. Stevens, C. M., and A. Mylroie: Biological action of „mustard gas“ compounds. Nature (Lond.) 166, 1019 (1950).Google Scholar
  829. Stille: Zit. Piekarski 1952. Die Zellkernäquivalenz der Bakterien. In: Mikroskopische und chemische Organisation der Zelle. 2. Kolloquium der Dtsch. Ges. für Physiol. Chemie am 6. u. 7. April 1951 in Mosbach i. Baden. Berlin-Göttingen-Heidelberg: Springer 1952.Google Scholar
  830. Stocker, B. A. D.: Measurements of rate of mutation of flagellar antigenic phase in Salmonella typhi murium. J. Hyg. (Lond.) 47, 398 (1949).Google Scholar
  831. Stocker, B. A. D., N. D. Zinder and Lederberg: Transduction of flagellar characters in Salmonella. J. gen. Microbiol. 9, 410 (1953).PubMedGoogle Scholar
  832. Stubblefield, E.: A morphological variant of Escherichia coli and its resistance to streptomycin. J. Bact. 54, 659 (1947).Google Scholar
  833. Sturtevant, A. H.: The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J. exp. Zool. 14, 43 (1913).Google Scholar
  834. Suter, E.: Multiplication of tubercle bacilli within phagocytes cultivated in vitro, and effect of streptomycin and isonicotinic acid hydrazide. Amer. Rev. Tuberc. 65, 775 (1952).Google Scholar
  835. Szulmajster, J., M. Grunberg-Manago et A. Prouvost: Sut le métabolisme aérobie et anaérobie de E. coli. Biochim. biophys. Acta 9, 636 (1952):Google Scholar
  836. Szybalski, W.: Multiple chemotherapy and antagonism between antimicrobial agents. VI. Internat. Kongr. für Mikrobiologie in Rom 1953. Riassunti delle Communicazioni vol. I.Google Scholar
  837. Szybalski, W.: Genetic studies on microbial crossresistance to toxic agents. II. Cross resistance of micro-coccus pyogenes var. aureus to thirty-four antimicrobial drugs. Antibiot. and Chemother. 3, 1095 (1953).Google Scholar
  838. Szybalski, W.: Genetic studies on microbial cross resistance to toxic agents. IV. Cross resistance of Bac. megaterium to forty-four antimicrobial drugs. Appl. Microbiol. 2, 57 (1954).PubMedCentralPubMedGoogle Scholar
  839. Szybalski, W., and V. Bryson: Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of E. coli to fifteen antibiotics. J. Bact. 64, 489 (1952).Google Scholar
  840. Szybalski, W., and V. Bryson: Bacterial resistance studies with derivatives of isonicotinic acid. Amer. Rev. Tuberc. 65, 768 (1952).Google Scholar
  841. Szybalski, W., and V. Bryson: One step resistance development to isoniazid and sodium-p-aminosalicylat. J. Bact. 66, 468 (1953).PubMedGoogle Scholar
  842. Szybalski, W., and V. Bryson: Genetic studies on microbial cross resistance to toxic agents; cross-resistance of mycobacterium ranae to 28 antimycobacterial agents. Amer. Rev. Tuberc. 69, 267 (1954).Google Scholar
  843. Szybalski, W., and V. Bryson: Origin of drug resistance in microorganisms, p. 20, 1955. In: Origins of resistance to toxic agents. Proc. of the Symp. in Wash. 25.-27. 3. 1954, eds. M. G. Sevag, R. D. Reid and O. E. Reynolds. New York: Academic Press 1955.Google Scholar
  844. Szybalski, W. and T. C. Nelson: Genetics of bacterial resistance to nitrofurans and radiation. Bact. Proc. 51 (1954).Google Scholar
  845. Tascidjian, C. L.: Resistance of trichophyton rubrum and microsporum audonini to twohydroxystilbamidine induced in vitro. J. invest. Derm. 23, 385 (1954).Google Scholar
  846. Tatum, E. L., and J. Lederberg: Gene recombination in bacterium Escherichia coli. J. Bact. 53, 673 (1947).PubMedGoogle Scholar
  847. Taylor, B., J. P. Greenstein and A. Hollaender: Effects of X-radiation on sodium thymus nucleate. Arch. Biochem. 16, 19 (1948).PubMedGoogle Scholar
  848. Taylor, H. E.: Transformations réciproques des formes R et ER chez le pneumocoque. C. R. Acad. Sci. (Paris) 228, 1258 (1949).Google Scholar
  849. Taylor, H. E.:Additive effects of certain transforming agents from some variants of pneumococcus. J. exp. Med. 89, 399 (1949).PubMedCentralPubMedGoogle Scholar
  850. Thayer, J. D., H. I. Perry, F. W. Field and W. Garson: Failure of penicillin, chloramphenicol, erythromycin and novobiocin to kill phagocytized gonococci in tissue. Antibiot. Ann. 513 (1957).Google Scholar
  851. Thompson, P. E.: On ability of plasmodium lophurae to acquire resistance to chlorguanide, camoquin, and chloroquine. J. infec. Dis. 83, 250 (1948).Google Scholar
  852. Thomson, R. Y., F. C. Heagy, W. C. Hutchinson and J. N. Davidson: The deoxyribonucleic acid content of the rat cell nucleus and its use in expressing the results of tissue analysis, with particular reference to the composition of liver tissue. Biochem. J. 53, 460 (1953).PubMedGoogle Scholar
  853. Thornley, M. J., J. Sinai and J. Yudkin: In: Drug resistance in microorganisms. London: J. A. Churchill 1957.Google Scholar
  854. Thurston, J. P.: The chemotherapy of plasmodium Berghey. I. Resistance to drugs. Parasitology 43, 246 (1953).PubMedGoogle Scholar
  855. Tobie, E. J., and T. V. Brand: Development of arsenic resistance in trypanosoma gambiense and its influence on parasitemia. J. infec. Dis. 92, 132 (1953).Google Scholar
  856. Torriani, A. M., et J. Monod: In: J. Monod et M. Cohn, La biosynthèse induite des enzymes (adaptation enzymatique). Advanc. Enzymol. 13. 67 (1952).Google Scholar
  857. Treffers, H. P., N. O. Belser and D. C. Alexander: Genetic studies on resistance to streptomycin and to substituted streptomycin (N’-y-hydroxypropyl-streptomycylamin). Antibiot. Ann. 595 (1953).Google Scholar
  858. Treffers, H. P., V. Spinelli and N. O. Belser: A factor (or mutator gene) influencing mutation rates in E. coli. Proc. nat. Acad. Sci. (Wash.) 40, 1064 (1954).Google Scholar
  859. Tschesche, R.: Folinsäure, ein neuer Wirkstoff der Vitamin B-Gruppe. Angew. Chemie A 59, 65 (1947).Google Scholar
  860. Tschesche, R.: Eine neue Deutung des antibakteriellen Wirkungsmechanismus der Sulfonamide. Z. Naturforsch. 26, 10 (1947).Google Scholar
  861. Tuckzek, A., u. M. Saufe: Erfahrungen mit dem Isonikotinhydrazid „Rimifon“ bei Tuberkulose. Munch. med. Wschr. 94, 1307. Zit. Ebina u. Takashina 1957.Google Scholar
  862. Tulasne, R., et R. Vendrely: Mise en évidence des noyaux bactériens par la ribonucléase. C.R. Soc. Biol. (Paris) 141, 674 (1947).Google Scholar
  863. Tulasne, R., et R. Vendrely: Conceptions nouvelles sur la division de l’appareil nucléaire chez les bactéries. Schweiz. Z. allg. Path. 17, 649 (1954).Google Scholar
  864. Umbreit, W. W., P. H. Smith and E. L. Oginsky: The action of streptomycin V. The formation of citrate. J. Bact. 61, 595 (1951).PubMedGoogle Scholar
  865. Tulasne, R., and N. E. Tonhazy: The action of streptomycin Iii. The action of streptomycin in tissue homogenates. J. Bact. 58, 769 (1949).Google Scholar
  866. Unsworth, K.: Observations on antrycide-fast strains of Trypanosoma congolense and T. vivax. Ann. trop. Med. Parasit. 48, 178 (1954).PubMedGoogle Scholar
  867. Vanderlinde, R. J., and D. Yegian: The pathogenicity of streptomycin dependent tubercle bacilli. Amer. Rev. Tuberc. 63, 96 (1951).Google Scholar
  868. Vandermeulen, J.: Studies on the mode of origin of resistance of bacterium coli to streptomycin. Acta path. microbiol. scand. 41, 411 (1957).PubMedGoogle Scholar
  869. Veltman, G.: Tierexperimentelle Untersuchungen zur Frage einer Virulenzminderung der Tuberkelbakterien unter der Chemotherapie. Tuberk.-Arzt 11, 14 (1957).Google Scholar
  870. Vendrely, R., et C. Vendrely: La teneur du noyau cellulaire en acide déoxyribonucléique à travers les organes, les individus et les espèces animales. Experientia (Basel) 4, 434 (1948).Google Scholar
  871. Viallier, J: Action du para-amino-salicylate d’isonicotyl hydrazide sur les mycobactéries. I. Action bactériostatique exercée in vitro. Ann. Inst. Pasteur 90, 114 (1956).Google Scholar
  872. Viallier, J,R. M. CayrÉ et H. Serre: Sensibilité et vitalité des souches streptomycino-résistantes de mycobacterium tuberculosis vis à vis de l’isoniazide. Ann. Inst. Pasteur 85, 116 (1953).Google Scholar
  873. Viallier, J, et S. Lager: Appréciation de la virulence des mycobactéries par l’inoculation intradermique au cobaye. Application aux souches isoniazidorésistantes. C. R. Soc. Biol. (Paris) 150, 185 (1956).Google Scholar
  874. Vilanova, X., and M. Casanovas: Artificially produced resistance in the trichophyton gypseum in the presence of undecylemic acid and in the presence of some vegetable essences. J. invest. Derm. 15, 161 (1950).PubMedGoogle Scholar
  875. Villela, G. G.: Effect of diet on the desoxyribonucleic acid of rat liver. Rev. bras. Biol. 12, 321 (1952).Google Scholar
  876. Viviwo, J. J., and W. W. Spink: Sulfonamide-resistant strains of staphylococci; clinical significance. Proc. Soc. exp. Biol. (N.Y.) 50, 336 (1942).Google Scholar
  877. Voegtlin, C., H. A. Dyer and D. W. Miller’ On drug-resistance of Trypanosomes with particular reference to arsenic. J. Pharmacol. exp. Ther. 23, 55 (1924).Google Scholar
  878. Vogel, H. J., and B. D. Davis: Adaptative phenomena in a biosynthetic pathway. Fed. Proc. 11, 485 (1952).Google Scholar
  879. Voureka, A.: Sensitation of penicillin-resistant bacteria. Lancet 1948I, 62.Google Scholar
  880. Voureka, A.: Induced variations in a penicillin-resistant staphylococcus. J. gen. Microbiol. 6, 352 (1952).PubMedGoogle Scholar
  881. Voureka, A., and W. H. Hughes: Frequency of penicillin-resistant staphylococci. Brit. med. J. 1949I, 395.Google Scholar
  882. Wacker, A.: Bakterientransformation, S. 85. Ges. für Physiol. Chemie in Mosbach i. Springer 1959. Chemotherapie und Chemoresistenz. 100. Ärzte. Klin. Wschr. 37, 1 (1959).Google Scholar
  883. M. Ebert u. H. KoLM: Über den Stoffwechsel der p-aminobenzoesäure, Folsäure und Aminosäure bei Enterococcus. II. Über den Stoffwechsel der p-aminosalicylsäure und Salicylsäure bei Enterococcus. Z. Naturforsch. 136, 141 (1958).Google Scholar
  884. H. Griesebacii, A. Trebst u. F. Weygand: Über den Wirkungsmechanismus der p-aminosalicylsäure. Stoffwechseluntersuchungen bei Mikroorganismen mit Hilfe radioaktiver Isotope. IX. Mitt. Angew. Chem. 66, 712 (1954).Google Scholar
  885. Wainwright, S. D., and M. R. PoLlock: Enzyme adaptation in bacteria: fate of nitratase in nitratase-adapted cells grown in the absence of substrate. Brit. J. exp. Path. 30, 190 (1949).PubMedGoogle Scholar
  886. Waisbren, B. A.: The treatment of bacterial infections with the combination of antibiotics and gamma-globulin. Antibiot. and Chemother. 7, 322 (1957).Google Scholar
  887. Waksman, S. A.: Streptomycin. Baltimore: Williams & Wilkins Company 1949. Waksman, S. A., E. Bugie and A. Shatz: Isolation of antibiotic substances from soil microorganisms, with special reference to streptothricin and streptomycin. Proc. Mayo Clin. 19, 537 (1944).Google Scholar
  888. Walbaum, L. E.: Studien über die Bildung der bakteriellen Toxine. I. Mitt. Staphylolysin. Biochem. Z. 129, 367 (1922).Google Scholar
  889. Wallmark, G.: Bacteriophage types, sensitivity to antibiotics and penicillinase production of staphylococcus aureus. Acta Soc. Med. upsalien. 59, 209 (1953).Google Scholar
  890. Wallmark, G.: Bacteriophage-typing of staphylococcus aureus pyogenes. Acta path. microbiol. scand. 34, 497 (1954).PubMedGoogle Scholar
  891. Watanabe, T., T. Fukasawa and D. Ushiba: Probable absence of direct induction of bacterial resistance to streptomycin. J. Bact. 73, 770 (1957).PubMedGoogle Scholar
  892. Watt, J. Y. C., and W. B. Vande-Grift: Laboratory observations on action of aureomycin, circulin, polymyxins B, D and E on Entamoeba histolytica. J. Lab. clin. Med. 36, 741 (1950).Google Scholar
  893. Weidel, W.: Diskussionsbemerkung zum Vortrag Wacker. In: Chemie der Genetik. 9. Colloquium der Ges. für physiol. Chemie in Mosbach i. Baden 1958. Berlin-Göttingen-Heidelberg: Springer 1959.Google Scholar
  894. Welsch, M.: Quelques aspects de la résistance du staphylocoque à la streptomycine. C. R. Soc. Biol. (Paris) 143, 1282 (1949).Google Scholar
  895. Welsch, M.: Recherches sur l’origine de la résistance microbienne à la streptomycine. Bull. Acad. Méd. Belg. 15, 454 (1950).Google Scholar
  896. Welsch, M.: Lysogénie et streptomycine-résistance. C. R. Soc. Biol. (Paris) 145, 1265 (1951).Google Scholar
  897. Welsch, M.: Influence de la nature du milieu de culture sur les propriétés des Escherichia coli résistant à la dihydrostreptomycine. C.R. Soc. Biol. (Paris) 149, 1530 (1955).Google Scholar
  898. Welsch, M.: Activité bactériolytiques des microorganismes. Ergebn. Mikrobiol. 30, 217 (1957).Google Scholar
  899. Werner, C. A., and V. Knight: The supressive effect of antimicrobial drugs on brucella melitensis infections in mice. J. Immunol. 65, 509 (1950).PubMedGoogle Scholar
  900. Westfal, L., R. L. Charles and C. M. Carpenter: The development of sulfapyridine-fast strains of the gonococcus. J. Bact. 39, 47 (1940).Google Scholar
  901. Wilde, J.: Die Beziehungen zwischen Virulenz und Antibiotikaresistenz bei den Corynebakterien. Z. ges. inn. Med. 13/14, 519 (1958).Google Scholar
  902. Wilkins, M. H. F.: Physical studies of the molecular structur of deoxyribose nucleic acid and nucleoprotein. Cold Spr. Harb. Symp. quant. Biol. 21, 75 (1956).Google Scholar
  903. Wilkins, M. H. F.: A. R. Stokes and H. R. Wilson: Molecular structure of deoxypentose nucleic acids. Nature (Lond.) 171, 738 (1953).Google Scholar
  904. Williams, H. H., M. Kaucher, A. J. Richards, E. Z. Moyer and G. R. Sharpless: Lipid partition of isolated cell nuclei of dog and rat livers. J. biol. Chem. 160, 227 (1945).Google Scholar
  905. Wilkins, M. H. F., R. E. O.: Historical. Phage typing of staphylococcus aureus. J. clin. Path. 9, 115 (1956).Google Scholar
  906. Wilkins, M. H. F. and E. S. Anderson: Bacteriophage typing of enteric pathogens and staphylococci and its use in epidemiology. J. clin. Path. 9, 94 (1956).Google Scholar
  907. Wilkins, M. H. F., and G. J. Harper: Staphylococcal haemolysins on sheep-blood agar with evidence for fourth haemolysin. J. Path. Bact. 9, 69 (1947).Google Scholar
  908. Williamson, J.: Observations on the dehydrogenase activity of normal and drug-resistant strains of trypanosoma rhodesiense. Exp. Parasit. 2, 348 (1953).PubMedGoogle Scholar
  909. Williamson, J.,D. S. Bertram and E. M. LouRie: Effects of paludrine and other antimalarials. Nature (Lond.) 159, 885 (1947).Google Scholar
  910. Williamson, J., and I. M. RoLlo: (1) Stimulating effect of amino-acids on the survival at 37° C of trypanosoma rhodesiense in serum free synthetic medium. (2) Properties of some recently developed drug-resistant strains of T. rhodesiense. T.ans. roy. Soc. trop. Med. Hyg. 46, 373 (1952).Google Scholar
  911. Williston, E. H., and G. P. Youmans: Streptomycin resistant strains of tubercle bacilli. Amer. Rev. Tuberc. 55, 536 (1947).Google Scholar
  912. Williston, E. H., and G. P. Youmans: The inability of p-aminosalicylic acid to delay the emergence of streptomycin-resistant tubercle bacilli in mice. Amer. Rev. Tuberc. 62, 156 (1950).Google Scholar
  913. Wilson, S. G.: Drug-resistance shown by trypanosomes following antrycide treatment. Nature (Lond.) 163, 873 (1949).Google Scholar
  914. Wince, O.: On interallelic crossing over. C. R. Lab. Carlsberg 25, 341 (1955).Google Scholar
  915. Winkler, K. C., and P. G. DE Haan::On action of sulfonilamide; set of noncompetitive sulfanilamide antagonists for Escherichia coli. Arch. Biochem. 18, 97 (1948).PubMedGoogle Scholar
  916. Winkler, K. C. and J. Van DE Langerijt: Action of sulfanilamide. Xii. Non-competitive sulfonamide antagonists for Escherichia coli. Antonie v. Leeuwenhoek 15, 129 (1949).Google Scholar
  917. Winner, H. I.: Quantitative sensitation of a penicillin-resistant staphylococcus. Lancet 1948I, 674.Google Scholar
  918. Witkin, E. M.: Genetics of resistance to radiation in E. coli. Genetics 32, 221 (1947).Google Scholar
  919. Witkin, E. M.: Mutations in Escherichia coli induced by chemical agents. Cold Spr. Harb. Symp. quant. Biol. 12, 256 (1947).Google Scholar
  920. Witkin, E. M.: Bacterial mutations involving resistance to destructive agents. Meth. med. Res. 3, 23 (1950).Google Scholar
  921. Whitehead, H. A.: The protection of bacteria against radiation effects. Science 116, 459 (1952).PubMedGoogle Scholar
  922. Wolinsky, E., M. M. Smith and W. Steenken jr.: Isoniazid susceptibility, catalase activity, and guinea pig virulence of recently isolated cultures of tubercle bacilli. Amer. Rev. Tubers. 73, 768 (1956).Google Scholar
  923. Wolinsky, E., and W. Steenken jr.: Streptomycin and penicillin resistant staphylococci; influence of pH, body fluids on streptomycin action. Proc. Soc. exp. Biol. (N.Y.) 62, 162 (1946).Google Scholar
  924. Wolinsky, E., and W. Steenken jr.: Infrequent appearence of drug resistant strains of tubercle bacilli in experimental animals treated with streptomycin and p-aminosalicylic acid. J. Bact. 66, 229 (1953).PubMedGoogle Scholar
  925. Wollman, E. L., F. Jacob and W. Hayes: Conjugation and genetic recombination in Escherichia coli K-12. Cold Spr. Harb. Symp. quant. Biol. 21, 141 (1956).Google Scholar
  926. Woons, D. D.: The relation of p-aminobenzoic acid to the mechanisms of the action of sulfonamide. Brit. J. exp. Path. 21, 74 (1940).Google Scholar
  927. Wooley, D. W.: Development of resistance to pyrithiamine in yeast and some observations in its nature. Proc. Soc. exp. Biol. (N.Y.) 55, 179 (1944).Google Scholar
  928. Work, T. S., and E. Work: The basis of chemotherapy. New York: Interscience 1948. Wresman, E.: Antibiotica-Kombination. Schweiz. med. Wschr. 87, 1045 (1957).Google Scholar
  929. Wright, S. S., and M. Finland: Cross-resistance among 3 tetracyclines. Proc. Soc. exp. Biol. (N.Y.) 85, 40 (1954).Google Scholar
  930. Wright, S. S., E. M. Purcell, C. Wilcox, M. Broderick and M. Finland: Antibiotic combinations and resistance to antibiotics. Development of resistance during repeated subcultures of staphylococci on media containing penicillin, streptomycin, erythromycin, terramycin and Chloramphenicol. J. Lab, clin. Med. 42, 877 (1953).Google Scholar
  931. Wyatt, G. R.: I. Recognition and estimation of 5-methylcytosine in nucleic acids. II. The purine and pyrimidine composition of deoxypentose nucleic acids. Biochem. J. 48, 581 (1951).PubMedGoogle Scholar
  932. Wyatt, G. R., and S. S. Cohen: A new pyrimidine base from bacteriophage nucleic acids. Nature (Lond.) 170, 1072 (1952).Google Scholar
  933. WYss, O., J. B. Clark, F. Haas and W. S. Stone: The role of peroxide in the biological effects of irradiated broth. J. Bact. 56, 51 (1948).Google Scholar
  934. Yamakawa, T.: Studies on the development and reversion of the resistance of S. typhi and S. enteritidis to chloramphenicol, aureomycin and streptomycin. I. J. Antibiot. 5, 114 (1952).Google Scholar
  935. Yaniv, H., Y. AvI-Dor and A. L. Olitzki: In vitro development of streptomycin resistance in bacterium tularense. Experientia (Basel) 9, 23 (1953).Google Scholar
  936. Yaniv, H., and B. D. Davis: The relation between sulfonamide resistance and p-aminobenzoic acid requirement. J. Bact. 66, 238 (1953).PubMedGoogle Scholar
  937. Yegian, D.: Heterogenous character of streptomycin-dependent mutants of a mycobaterium. J. Bact. 61, 161 (1951).PubMedGoogle Scholar
  938. Yegian, D., V. Budd and E. J. Vanderlinde: Streptomycin-dependent tubercle bacilli: a simple method for isolation. J. Bact. 58, 257 (1949).PubMedGoogle Scholar
  939. Yegian, D., and R. J. Vanderlinde: The biological characteristics of streptomycin-dependent M. ranae. J. Bact. 57, 169 (1949).PubMedGoogle Scholar
  940. Yorke, W., and F. Hawking: Studies in chemotherapy: Aresistance of drug-fast trypanosome modified by transference to different species of vertebrate host. Ann. trop. med. Parasit. 26, 215 (1932).Google Scholar
  941. Yegian, D., F. Murgatroyd and F. Hawking: Studies in chemotherapy: production of resistant strains by expossure of trypanosomes to reduced tryparsamide in vitro. Ann. trop. Med. Parasit. 25, 521 (1931).Google Scholar
  942. Yegian, D., F. Murgatroyd and F. Hawking: Studies in chemotherapy: preliminary contribution on nature of drug resistance. Ann. trop. Med. Parasit. 25, 351 (1931).Google Scholar
  943. Yegian, D., F. Murgatroyd and F. Hawking: Studies in chemotherapy: comparison of.strains of T. rhodesiense made resistant to various arsenicals and antimonials to Bayer 205, and to acriflavine, respectively. Ann. trop. Med. Parasit. 26, 577 (1932).Google Scholar
  944. Yegian, D., F. Murgatroyd and F. Hawking: Studies in chemotherapy; further observations on transmissibility of tryparsamideresistance by Glossina. Ann. trop. Med. Parasit. 27, 157 (1933).Google Scholar
  945. Youmans, G. P., G. W. Raleigh and A. S. Youmans: The tuberculostatic action of p-aminosalicylic acid. J. Bact. 54, 409 (1947).PubMedGoogle Scholar
  946. Youmans, G. P., and E. H. Williston: Effect of streptomycin on experimental infections produced in mice with streptomycin resistant strains of M. tuberculosis var. hominis. Proc. exp. Biol. (N.Y.) 63, 131 (1946).Google Scholar
  947. Youmans, G. P., and R. Osborne: Occurence of streptomycin resistant tubercle bacilli in mice treated with streptomycin. Proc. Soc. exp. Biol. (N.Y.) 70, 36 (1949).Google Scholar
  948. Zablocki, B., C. Czerniawski and L. Sedlaczek: The effect on staphylococcus aureus sensitivity to penicillin of lipopolysaccharide-protein symplexes isolated from various strains of Escherichia coli. Bull. Acad. pol. Sci. Cl. 2, 5/6, 179 (1957).Google Scholar
  949. Zablocki, B., and M. Rclicka: The influence of lipo-polysaccharide-protein symplexes on the penicillin sensitivity of staphylococci. Bull. Acad. pol. Sci. Cl. 2, 3, 253 (1955).Google Scholar
  950. Zalokar, M.: The p-aminobenzoic acid requirement of the „sulphonamide-requiring“ mutant strain of neurospora. Proc. nat. Acad. Sci. (N.Y.) 34, 32 (1948).Google Scholar
  951. Zamenhof, S.: Studies on bacterial mutability; time of appearance of mutant in Escherichia coli. J. Bact. 51, 351 (1946).Google Scholar
  952. Zamenhof, S.: In: Phosphorus metabolism (Mcelroy and Glass, eds.), vol. 2, p. 301. Baltimore: Johns Hopkins Press 1952.Google Scholar
  953. Zamenhof, S.: Biology and biophysical properties of transforming principles. Progr. Biophysics 6, 85 (1956).Google Scholar
  954. Zamenhof, S.: R. DE Giovanni and S. Greer: Induced gene unstabilization. Nature (Lond.) 181, 827 (1958).Google Scholar
  955. Zamenhof, S.: and K. Rich: Escherichia coli containing unnatural pyrimidines in its deoxyribonucleic acid. J. Bact. 71, 60 (1956).PubMedGoogle Scholar
  956. Zamenhof, S., and G. Griboff: Incorporation of halogenated pyrimidines into the deoxyribonucleic acids of bacterium coli and its bacteriophages. Nature (Lond.) 174, 306 (1954).Google Scholar
  957. Zamenhof, S., G. Leidy, H. E. Alexander, P. L. Fitzgerald and E. Chargaff: Purification of the desoxypentose nucleic acid of hemophilus influenzae having transforming activity. Arch. Biochem. 40, 50 (1952).PubMedGoogle Scholar
  958. Zamenhof, S., E. Hahn and H. E. Alexander: Inactivation and unstabilization of the transforming principle by mutagenic agents. J. Bact. 72, 1 (1957).Google Scholar
  959. Zamenhof, S., B. Reiner, R. DE Giovanni and K. Rich: Introduction of unnatural pyrimidines into desoxyribonucleic acid of Escherichia coli. J. biol. Chem. 219, 165 (1956).PubMedGoogle Scholar
  960. Zamenhof, S., B. Reiner, R. DE Giovanni and K. Rich: Thymine-5-bromouracil,exchange“ in deoxyribonucleic acid of Escherichia coli. Fed. Proc. 15, 390 (1956).Google Scholar
  961. Zamenhof, S., B. Reiner, R. DE Giovanni and K. Rich: S.: In: The chemical basis of heredity, W. D. Mcelroy and B. Glass eds., p. 351. Baltimore: John Hopkins Press 1957.Google Scholar
  962. Zamenhof, S., B. Reiner, R. DE Giovanni and K. Rich: Biochemistry of genetical control of bacterial morphology. IV. Internat. Kongr. für Biochemie in Wien 1958, Symp. No VI.Google Scholar
  963. Zelle, M. R.: Genetic constitutions of host and pathogen in mouse typhoid. J. infect. Dis. 71, 131 (1942).Google Scholar
  964. Zeller, E. A., C. A. Owen and A. G. Karlson: Diamine oxydase of Mycobacterium smegmatis: effect of streptomycin and dihydrostreptomycin. J. biol. Chem. 188, 623 (1951).PubMedGoogle Scholar
  965. Ziegler, K., u. M. DÖRle: Bakterienschutz gegen Metallsalze durch Gewöhnung. Z. ges. exp. Med. 72, 178 (1930).Google Scholar
  966. Zinder, N. D., and J. Lederberg: Genetic exchange in Salmonella. J. Bact. 64, 679 (1952).PubMedGoogle Scholar
  967. Zwart Yocrspuij, A. J., and C. A. G. Naas: Some aspects of the notions additivity, synergism and antagonism in the simultaneous activity of 2 antibacterial agence in vitro. Arch. int. Pharmacodyn. 109, 211 (1957).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • Günther Gillissen
  • Ilse-Maria Gillissen

There are no affiliations available

Personalised recommendations