Advertisement

Matrixmethoden in der Demographie

  • Anatol Rapoport
Chapter
Part of the Physica Paperback book series (PHPA)

Abstract

Die stationäre Markov-Kette bildet eine Art stochastischer Prozesse (vgl. S.), bei denen die Zufallsvariablen der Familie X(n) alle diskret sind. Der Index n für die Werte 0, 1, 2,... ist ebenfalls diskret. D.h. sowohl der Zustandsraum als auch der Indexraum der Familie sind diskret.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1).
    b (t) und d(t) in diesem Kapitel entsprechen B(t) bzw. D(t) vom Kapitel 6.Google Scholar
  2. 2).
    Eine nichtsinguläre Matrix ist eine quadratische Matrix, deren Determinante nicht Null ist.Google Scholar
  3. 3).
    Die Eigenwerte einer Matrix G sind die Wurzeln des Polynoms, das die Determinante der Matrix (G — xI) ist.Google Scholar
  4. 4).
    Falls λ ein Eigenwert von G ist, dann ist der entsprechende Eigenvektor ein Vektor v, der die Gleichung Gv = λv erfüllt.Google Scholar
  5. 5).
    Bei der Darstellung der „klassischen“ Methode haben wir die volle Dynamik der Altersverteilung nicht wirklich behandelt, denn die Resultate bezogen sich lediglich auf die Gleichgewichtsverteilungen. Die dynamische Theorie wurde von Lotka [1939] ausgearbeitet und von Coale weiterentwickelt [vgl. Coale, 1972, Kapitel 3]Google Scholar
  6. 6).
    In den von Rogers [1968] untersuchten Modellen werden die unabhängigen Variablen wie etwa „nicht-agrarische Arbeiterpopulation“ usw. expliziert definiert. Zudem unterscheiden sich die Definitionen in den verschiedenen Modellen: zuweilen werden die Gehälter der Angestellten bei Arbeitnehmerlöhnen berücksichtigt, zuweilen auch nicht. Wir vernachlässigen diese Details, da wir uns nur für die allgemeine Form des Modells interessieren.Google Scholar
  7. 7).
    Stewart [1948], ein früher Vertreter mathematischer Modelle von Wechselwirkungen zwischen Populationen hat eine Formel für den „Betrag von Interaktion“ zwischen zwei Populationen vorgeschlagen, und gemeint, sie sei dem Newtonschen Gravitationsgesetz analog (vgl. Gl. (1.12)): wobei γ zwischen 1 und 2 konstant ist. I ij kann in diesem Modell als Migrationsrate zwischen i und j interpretiert werden.Google Scholar
  8. 8).
    Falls m ij dem Produkt der Potenzen der unabhängigen Variablen proportional ist, dann ist loge m ij eine lineare Funktion ihrer Logarithmen.Google Scholar
  9. 9).
    Erinnert sei an die Kritik der linearen Modelle in den Kapiteln 4 und 7.1m multiplen Regressionsmodell wurde angenommen, daß die Löhne und das Niveau der Arbeitslosigkeit die Migrationsraten beeinflussen, aber der „Rückkopplungseffekt“, d.h. der Einfluß der Migrationsraten auf die angenommenen ursachlichen Faktoren wird außer acht gelassen. In den globalen Modellen werden solche Effekte häufig berücksichtigt. Dies bewirkt jedoch, daß die mathematischen Modelle schwer zu handhaben sind. Deshalb wird bei der globalen Modellierung Computersimulierung unentbehrlich.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • Anatol Rapoport

There are no affiliations available

Personalised recommendations