Advertisement

Abstract

In this paper we briefly review the present theoretical understanding of a suspension of particles whose orientation is affected by rotational Brownian motion. The particles are rigid, axially symmetric, sufficiently small so that they and their disturbance flow are inertialess and not acted upon by external body forces or couples. The suspension is dilute so that there are no important hydrodynamic interactions between the particles and is examined for a flow with a sufficiently large length scale that the concept of an equivalent homogeneous material — the bulk suspension — is meaningful. The orientation state of the particles in the suspension is determined by a competition between the random Brownian rotations and the tendency to preferred alignment induced by the gradient in the bulk deformation rate for the suspension. We are interested in the resulting rheological behaviour.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batchelor, G. K., J. Fluid Mech. 41, 545 (1970).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. Boeder, P., Z. Physics. 75, 258 (1932).ADSCrossRefGoogle Scholar
  3. Brenner, H., J. Coll. Sci. 34, 258 (1970).Google Scholar
  4. Brenner, H., J. Chem. Eng. Sc. 27, 1069 (1972).CrossRefGoogle Scholar
  5. Bretherton, F. P., J. Fluid Mech. 14, 284 (1962).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. Burgers, J. M., Kon. Ned. Akad. Wet. Verhand. (Eerste Sedic) 16, 113 (1938).Google Scholar
  7. Giesekus, H., Rheol. Acta 2, 50 (1962).CrossRefGoogle Scholar
  8. Hinch, E. J. and L. G. Leal, J. Fluid Mech. 52, 683 (1972).ADSCrossRefzbMATHGoogle Scholar
  9. Jeffery, G. B., Proc. Roy. Soc.≫ 102, 161 (1922).ADSCrossRefGoogle Scholar
  10. Leal, L. G. and E. J. Hinch, J. Fluid Mech. 46, 685 (1971).ADSCrossRefzbMATHGoogle Scholar
  11. Leal, L. G. and E. j. Hinch, J. Fluid Mech. (to appear 1972).Google Scholar
  12. Peterlin, A., Z. Phys. 112, 1 (1938).ADSCrossRefGoogle Scholar
  13. Peterlin, A. and M. A. Stuart, Z. Phys. 112, 129 (1939).ADSCrossRefGoogle Scholar
  14. Sadron, C., Flow Properties of Disperse Systems, Chap. 4. Ed.: J.J. Hermans (Amsterdam 1953).Google Scholar
  15. Scheraga, H. A., J. Chem. Phys. 23, 1526 (1955).ADSCrossRefGoogle Scholar
  16. Scheraga, H. A., J. T. Edsal, and J. O. Gadd, J. Chem. Phys. 19, 110 (1951).Google Scholar
  17. Stewart, W. E. and J. P. Sorensen, Trans. Soc. Rheol. 16/1, 1 (1972).CrossRefGoogle Scholar
  18. Takserman-Krozer, R. and A. Ziabicki, J. Polymer Sci. 1, 491 (1963).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • L. G. Leal
    • 1
  • E. J. Hinch
    • 2
  1. 1.Chemical Engineering California Institute of TechnologyPasadenaUSA
  2. 2.DAMPTCambridge UniversityCambridgeUK

Personalised recommendations