Advertisement

General equation of stress-strain behavior in crystalline polymers

  • M. Takayanagi
  • K. Imada
  • S. Maruyama
  • K. Nakamura

Abstract

Crystalline polymers show a remarkable strain hardening in its plastic deformation compared with metals. In the case of metals, the power law holds between true stress and true strain, the power law index of which is lower than one (1). True stress tends to saturate with increasing true strain. Polymer chain shows very high modulus and high bonding energy along molecular axis, whereas intermolecular force is weak and the modulus perpendicular to the molecular axis is about one hundredth of that along molecular axis. With the progress of unfolding of molecular chains from folded structure in lamellar crystals, the deformation stress increases rapidly. To describe such a deformation process of crystalline polymers, it is especially necessary to employ true stress and true strain instead of nominal stress and nominal strain. In our previous paper (2), we have presented the equation to describe the true stress-strain relationship in a very simplified form, which was verified for linear polyethylene (HDPE) and nylon 6. In this paper, we have examined the applicability of our equation to isotactic polypropylene (PP), polyoxymethylene (POM) and polytetrafluoroethylene (PTFE).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Ref. to Dieter, G., Mechanical Metallurgy, p. 247 (New York 1961).Google Scholar
  2. 2).
    Maruyama, S., K. Imada, and M. Takayanagi, Intern. J. Polymeric Mater. 1, 211 (1972).CrossRefGoogle Scholar
  3. 3).
    Shimanouchi, T., M. Ashida, and S. Enomoto, J. Polymer Sci. 59, 93 (1962).ADSCrossRefGoogle Scholar
  4. 4).
    Geil, P. H., J. Polymer Sci. 44, 449 (1960).ADSCrossRefGoogle Scholar
  5. 5).
    Kojima, M., J. Polymer Sci. A-2, 5, 597 (1967).CrossRefGoogle Scholar
  6. 6).
    Kajiyama, T., T. Okada, A. Sakoda, and M. Takayanagi, J. Macromol. Sci-Phys. B7(3), 583 (1973).CrossRefGoogle Scholar
  7. 7).
    Peterlin, A., a) J. Polymer Sci., C (9), 61 (1965).Google Scholar
  8. b).
    ibid., C (15), 427 (1967).Google Scholar
  9. c).
    ibid, C (18), 123 (1967).Google Scholar
  10. d).
    Peterlin, A., Kolloid-Z. u. Z. Polymere 216/217, 129 (1967).CrossRefGoogle Scholar
  11. e).
    Peterlin, A., Kolloid-Z. u. Z. Polymere, 233, 857 (1969).Google Scholar
  12. f).
    Peterlin, A., Polymer Eng. & Sci. 8, 172 (1969).CrossRefGoogle Scholar
  13. g).
    Peterlin, A., Man made fibers (eds. Mark, Atlas, and Cernia), Vol. 1, p.283 (New York 1967).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • M. Takayanagi
    • 2
  • K. Imada
    • 2
  • S. Maruyama
    • 2
  • K. Nakamura
    • 2
    • 1
  1. 1.Sumitomo Chemical Ind. Co., Ltd.Japan
  2. 2.Faculty of EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations