Advertisement

Abstract

In this paper, we consider the flow generated in rheometers which make use of a steady flow to determine the linear time-dependent behaviour of elastico-viscous liquids. The Orthogonal (1), Balance (2) and Eccentric-cylinder (3, 4) rheometers are perhaps the best known examples of this class of rheometers at the present time (see fig. 1). The basic idea is that the test fluid is contained between two instrument members, which rotate with the same angular velocity about axes which differ by a small linear displacement or a small angular displacement. The real and imaginary parts of the complex viscosity are then determined by measuring the components of the force or the components of the couple on one of the instrument members. Provided both instrument members rotate with the same angular velocity and the displacement between the axes of rotation is small enough, the fluid is subjected to a small-amplitude oscillatory shear and the results can be interpreted unambiguously in terms of the complex viscosity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Maxwell, B. and R. P. Chartoff, Trans. Soc. Rheol. 9, 41 (1965).CrossRefGoogle Scholar
  2. 2).
    Kepes, A., Paper presented at 5th Int. Congress on Rheology, Kyoto (Japan) 1968.Google Scholar
  3. 3).
    Abbott, T. N. G. and K. Walters, J. Fluid Mechanics 43, 257 (1970).ADSCrossRefzbMATHGoogle Scholar
  4. 4).
    Broadbent, J. M. and K. J. Walters, Phys. D. 4, 1863 (1971).ADSGoogle Scholar
  5. 5)(a).
    Pipkin, A. C. and D. R. Owen, Phys. Fluids 10, 836 (1967).ADSCrossRefGoogle Scholar
  6. 5)(b).
    Pipkin, A. C., Trans. Soc. Rheol. 12, 397 (1968).CrossRefzbMATHGoogle Scholar
  7. 6).
    Booij, H. C., Rheol. Acta 5, 215 (1966).CrossRefGoogle Scholar
  8. 7).
    Macdonald, I. F. and R. B. Bird, J. Chem. Phys. 70, 2068(1966).CrossRefGoogle Scholar
  9. 8).
    Osaki, K., M. Tamura, M. Kurata, and T. Kotaka, J. Chem. Phys. 69, 4183 (1965).CrossRefGoogle Scholar
  10. 9).
    Jones, T.E.R. and K. Walters, J. Phys. A4, 85 (1971).Google Scholar
  11. 10).
    Bernstein, B. and R. R. Huilgol, Trans. Soc. Rheol. 15, 731 (1971).CrossRefGoogle Scholar
  12. 11).
    Walters, K. J. Fluid Mechanics 40, 191 (1970).ADSCrossRefzbMATHGoogle Scholar
  13. 12).
    Abbott, T. N. G., G. W. Bowen, and K. Walters, J. Phys. D. 4, 190 (1971).ADSCrossRefGoogle Scholar
  14. 13).
    Walters, K. and N. D. Waters, Rheol. Acta 3, 312 (1964).CrossRefzbMATHGoogle Scholar
  15. 14).
    Abbott, T. N. G. and K. Walters, J. Fluid Mechanics 40, 205 (1970).ADSCrossRefzbMATHGoogle Scholar
  16. 15).
    Oldroyd, J. G., Proc. Roy. Soc. A200, 523 (1950).ADSCrossRefMathSciNetGoogle Scholar
  17. 16).
    Knight, D. G., Ph. D. thesis. (Univ. of Wales) 1973 (in prep.).Google Scholar
  18. 17).
    Oldroyd, J. G., Proc. Roy. Soc. A245, 278 (1958).ADSCrossRefMathSciNetGoogle Scholar
  19. 18).
    Walters, K. and T.E.R. Jones, Proc.5th Int.Congress Rheol., Vol. 4, p. 337 (Univ. Park Press 1970).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • D. G. Knight
    • 1
  • K. Walters
    • 1
  1. 1.Department of Applied MathematicsUniversity College of WalesAberystwythUK

Personalised recommendations