Advertisement

Abstract

Recently, a new line of attack (1) has been pursued in order to study stresses and deformations theoretically in laminated and fibrous composite structures [see, e.g., (2–6) and references therein]. This theory takes into account both elastic and geometric properties of each constituent. Thus, it differs conceptually from the classical elastic modulus theory of composites. The classical theory has been shown to be satisfactory for static problems only, whereas the new theory yields good results for static as well as dynamic problems of composites. The reader is referred to Herrmann (7) for a comprehensive discussion of these theories.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Herrmann, G. and J. D. Achenbach, Proc. AIAA/ ASME Eight Structures, Structural Dynamics, and Material Conference, p. 112 (New York 1967).Google Scholar
  2. 2).
    Achenbach, J. D. and G. Herrmann, Dynamics of Structured Solids, p. 23 (New York 1968).Google Scholar
  3. 3).
    Grot, R. A. and J. D. Achenbach, Acta Mechanica 9, 245 (1970).CrossRefzbMATHGoogle Scholar
  4. 4).
    Sun, C. T., J. D. Achenbach, and G. Herrmann, J. Appl. Mech. 35, 467 (1968).ADSCrossRefzbMATHGoogle Scholar
  5. 5).
    Herrmann, G. and J. D. Achenbach, Mechanics of Composite Materials, p. 337 (New York 1970).Google Scholar
  6. 6).
    Dökmeci, M. C., Development in Theoretical and Applied Mechanics, p. 109 (Univ. of North Carolina Press 1971).Google Scholar
  7. 7).
    Herrmann, G., Proc. Soc. Experimental Stress Analysis 29, 235 (1972).Google Scholar
  8. 8).
    Christensen, R. M. and P. M. Naghdi, Acta Mechanica 3, 1 (1967).CrossRefzbMATHGoogle Scholar
  9. 9).
    Truesdell, C. and R. A. Toupin, Handbuch der PhysikIII/1 (Berlin-Heidelberg-New York 1960).Google Scholar
  10. 10).
    Bringen, A. C., Mechanics of Continua (New York 1967).Google Scholar
  11. 11).
    Onat, E. T. and S. Breuer, Progress in Applied Mechanics, p. 349 (London 1963).Google Scholar
  12. 12).
    Sternberg, E. and M. E. Gurtin, ibid., p. 373.Google Scholar
  13. 13).
    Christensen, R. M., Theory of Viscoelasticity (New York 1971).Google Scholar
  14. 14).
    Biot, M. A., Int. J. Solids Struct. 2, 645 (1966).CrossRefGoogle Scholar
  15. 15).
    Dökmeci, M. C., J. Elasticity 3, 27 (1973).CrossRefGoogle Scholar
  16. 16).
    Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity (Dover 1944).Google Scholar
  17. 17).
    Knops, R. J. and L. E. Payne, Uniqueness Theorems in Linear Elasticity (Berlin-Heidelberg-New York 1971).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • M. Cengiz Dökmeci
    • 1
  • Mg. AlpD
    • 1
  1. 1.Theoretical and Applied MechanicsDept. of Cornell UniversityIthacaUSA

Personalised recommendations