This research was initially motivated by interest in the bulk properties of lubricating fluids since little was known about the response of a liquid to a rapidly changing stress. In elastohydrodynamic lubrication, elastic deformation of the contact surfaces occurs with the accompanying development of a very high pressure which, in the centre of the contact zone, may reach 10,000 atm. The fact that this phenomenon is essentially non-linear does not detract from the need, in the first instance, to study the linear viscoelastic behaviour over wide ranges of temperature and pressure. Accordingly, the author and his colleagues have conducted a detailed study of the viscoelastic behaviour of liquids when these are subjected to sinusoidally oscillating shear stress, the amplitude of which is sufficiently small for the response to be restricted to the linear viscoelastic region.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Barlow, A. J., J. Lamb, A. J. Matheson, P. R. K. L. Padmini, and J. Richter, Proc. Roy. Soc. (London), A 298, 467–480 (1967).ADSCrossRefGoogle Scholar
  2. 2).
    Barlow, A. J., A. Erginsav, and J. Lamb, Proc. Roy. Soc. (London), A 298, 481–494 (1967).ADSCrossRefGoogle Scholar
  3. 3).
    Barlow, A. J. and J. Lamb, Disc. Faraday Soc. 43, 223–230 (1967).CrossRefGoogle Scholar
  4. 4).
    Barlow, A. J., A. Erginsav, and J. Lamb, Proc. Roy. Soc. (London), A309, 473–496 (1969).ADSCrossRefGoogle Scholar
  5. 5).
    Barlow, A.J., G. Harrison, J. B. Irving, M. G. Kim, J. Lamb, and W. C. Pursley, Proc. Roy. Soc. (London), A327, 403–412 (1972).ADSCrossRefGoogle Scholar
  6. 6).
    Irving, J. B. and A. J. Barlow, J. Physics E: Sci. Instruments, 4, 232–236 (1971).ADSCrossRefGoogle Scholar
  7. 7).
    Gross, B., Mathematical structure of the theories of viscoelasticity (Paris Hermann 1953).Google Scholar
  8. 8).
    Plazek, D. J. and V. M. O’Rourke, J. Pol. Sci, 9, 209–243 (1971).Google Scholar
  9. 9).
    Barlow, A. J. and A. Erginsav, Proc. Roy. Soc. (London), A327, 175–190 (1972).ADSCrossRefGoogle Scholar
  10. 10).
    Davidson, D. W. and R. H. Cole, J. Chem. Phys, 19, 1484–1490 (1951).ADSCrossRefGoogle Scholar
  11. 11).
    Williams, G. and M. Shears, Private Communication.Google Scholar
  12. 12).
    Plazek, D. J. and J. H. Magill, J. Chem. Phys. 45, 3038–3050 (1966).ADSCrossRefGoogle Scholar
  13. Plazek, D. J. and J. H. Magill, J. Chem. Phys. 49, 3678–3682 (1968).ADSCrossRefGoogle Scholar
  14. 13).
    Phillips, M. C., A. J. Barlow, and J. Lamb, Proc. Roy. Soc, London A329, 193–218 (1972).ADSCrossRefGoogle Scholar
  15. 14).
    Goldstein, M., J. Chem. Phys. 51, 3728–3739 (1969).ADSCrossRefGoogle Scholar
  16. 15).
    Barlow, A. J., J. Lamb, and A. J. Matheson, Proc. Roy. Soc, A292, 322–342 (1966).ADSCrossRefGoogle Scholar
  17. 16).
    Barlow, A. J., G. Harrison, and J. Lamb., Proc. Roy. Soc, A282, 228–251 (1964).ADSCrossRefGoogle Scholar
  18. 17).
    Lamb, J. and P. Lindon, J. Acous. Soc. Amer. 41, 1032–1042 (1967).ADSCrossRefGoogle Scholar
  19. 18).
    Barlow, A. J., R. A. Dickie, and J. Lamb, Proc. Roy. Soc, A300, 356–372 (1967).ADSCrossRefGoogle Scholar
  20. 19).
    Barlow, A. J., M. Day, G. Harrison, J. Lamb, and S. Subramanian, Proc. Roy. Soc, A309, 497–520 (1969).ADSCrossRefGoogle Scholar
  21. 20).
    Plazek, D. J., J. Pol. Sci. 6, 621–638 (1968).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • John Lamb
    • 1
  1. 1.Dept. of Electronics and Electrical EngineeringThe University GlasgowQQScotland

Personalised recommendations