Nearly all the textile synthetic fibres now available are industrially produced by bringing a spinnable material into liquid state, molten or concentrated solution, and forcing it through a small die to form a free liquid jet at the exit. This solidifies as it proceeds along the spinning path and the solid fibre is collected on a rotating drum. Solidification is due to cooling in the melt spinning, to evaporation of solvent in the dry spinning or to precipitation of polymer from solution in wet-spinning.



Froude number U 2 0/gR 0 with g acceleration gravity (cm/sec2)


Nusselt’ number 2Rh/Ka with h heat transfer coefficient (cal/cm2 sec °C) and Ka air thermal conductivity (cal/cm sec °C) around the forming fibre


Volume rate of flow (cm3/sec)


Radial distance from the central axis of the fibre (cm)


Cross section radius of the fibre (cm)


Inside diameter of the nozzle (cm)


Quenching time (sec)


Temperature of fibre at the centre (°C)


Initial temperature at the distance x = 0 (°C)


Mean value of temperature of air surrounding the forming fibre (°C)


Mean value of velocity of glass at x = 0 (cm/sec)


Local velocity of fibre in the axial direction (cm/sec)


Axial distance of the fibre from the nozzle exit (cm/sec)


Weight rate of flow (g/minute)


Weber number ϱ U 2 0 R 0


Glass surface tension (dynes/cm)


Angle between the fibre axis and the tangent to the fibre surface in the r, x plane (radiant).


Air kinematic viscosity (cm2/sec)


Glass density (g/cm3)


Glass viscosity (poises)


Glass viscosity at T t.


Maxwell relaxation time η/G (sec) with G (dynes/cm2) elastic shear modulus of glass


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Ziabicki, A., Principles of spinning. Man Made Fibres, Science and Technology, Vol. 1, Edited by Mark, Atlas, Cernia (New York 1967).Google Scholar
  2. 2).
    Acierno, D., J. N. Dalton, J. M. Rodriguez and J. L. White, J. Appl. Poly. Sci. 15, 2395–2415 (1971).CrossRefGoogle Scholar
  3. 3).
    Thomas, W. F., Phys. Chem. Glasses 1, 4–18 (1960).Google Scholar
  4. 4).
    Burgman, J. A. and E. M. Hunia, Glass Technology 11, 147–152 (1970).Google Scholar
  5. 5).
    Anderson, O. L., J. Appl. Physics 29, 9–12 (1958).ADSCrossRefGoogle Scholar
  6. 6).
    Bateson, S., J. Appl. Physics, 29, 13–21 (1958).ADSCrossRefGoogle Scholar
  7. 7).
    Aslanova, M. S. and V. E. Khazanov, Steklo Keram. 25, 9, 1–4 (1968).Google Scholar
  8. 8).
    Bruckner, R., The structure of glass fibres, in particular glass fibres. VII Congrès International du Verre, Paper n. 38, Bruxelles 1965.Google Scholar
  9. 9).
    Manfrè, G., Some rheological aspects in spinning glass fibres. VII Congrès International du Verre, Paper n. 78, Bruxelles 1965.Google Scholar
  10. 10).
    Deeg, E. and A. Dietzel, Glastech. Ber. 28, 221–232 (1955).Google Scholar
  11. 11).
    Manfrè, G., Verres et Réfractaires 26, 57–65 (1972).Google Scholar
  12. 12).
    Glicksman, L. R., Trans. ASME, J. Basic Engineering 90, 343–354 (1968).CrossRefGoogle Scholar
  13. 13).
    Manfrè, G., Temperature profile of drawing zone in spinning continuous glass fibres. Autumn Meeting Amer. Cer. Soc, Bedford Springs (USA), (1967).Google Scholar
  14. 14).
    Krishman, S. and L. R. Glicksman, Trans. ASME, J. Basic Engineering, Paper n. 70 — WA/FE — 3 (1970).Google Scholar
  15. 15).
    Sununu, J. H. and G. A. Brown, Trans. ASME, J. Basic Engineering, Paper n. 70 — WA/HT — 12 (1970).Google Scholar
  16. 16).
    Glicksman, L. R., Glass Technology 9, 131–138 (1968).Google Scholar
  17. 17).
    Manfrè, G., Survey of cooling rate of glass fibres. Autumn Meeting Am. Cer. Soc, Bedford Springs (USA), (1967).Google Scholar
  18. 18).
    Arridge, R. G. C. and K. Prior, Nature 203, 386–387 (1964).ADSCrossRefGoogle Scholar
  19. 19).
    Manfrè, G., Glass Technology 10, 99–106 (1969).Google Scholar
  20. 20).
    Khodakovskii, M.D. and S.A. Kutunov, Steklo Kera-mics 21, 2, 3–10 (1964).Google Scholar
  21. 21).
    Burgman, J. A., Glass Technology 11, 110–116 (1970).Google Scholar
  22. 22).
    Zawadcki, A., Szklo I Ceramic 18, 40–44 (1967).Google Scholar
  23. 23).
    Ziabicki, A., Kinetics of polymer crystallization and molecular orientation in the course of melt spinning. Applied Polymer Symposia n. 6, Fiber Spinning and Drawing, p. 1-18 (New York).Google Scholar
  24. 24).
    Kase, S. and T. Matsuo, J. Polymer Sci. Part A 3, 2541–2554 (1965).Google Scholar
  25. Kase, S. and T. Matsuo, J. Polymer Sci. Part A Part A 11, 251–287 (1966).Google Scholar
  26. 25).
    Manfrè, G., Two dimensional analysis of the drawing zone in liquid molten spinning. Paper presented at the Euromech Colloquium 37 on Fluid Mechanics and Polymer Processing, Naples, 20–23 June (1972), (in press).Google Scholar
  27. 26).
    Ziabicki, A. and R. Takserman-Krozer, Roczniki Chemii, 37, 1511–1520,(1963).Google Scholar
  28. 27).
    Blokh, K. I, Relaxation theory of glass formation and strength of glass fibres. The structure of glass, Vol. 6, 222–224, Edited by Porai-Koshits (New York 1966).Google Scholar
  29. 28).
    Dusollier, G. and J. Robredo, Verres Réfract. 24, 2, 63–70 (1970).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • G. Manfrè
    • 1
  1. 1.Montecatini Edison S.p.A. Istituto Ricerche “G. Donegani”NovaraItalia

Personalised recommendations