Advertisement

Abstract

Those who are serious about their desire to formulate constitutive equations which actually describe the behavior of visco-elastic media naturally wish to be able to have their equations subjected to experimental test. To this end, it is fruitful to seek to derive from a given theory relations among observable quantities. By an observable quantity in the context of our subject we mean a quantity which may be defined operationally in terms of a given flow or deformation history which may be carried out experimentally to within acceptable accuracy, i.e. a quantity which may be determined by rheological measurements. Steady state shearing stress, normal stress and complex dynamic shear modulus are examples of such quantities as are also elongational viscosity and the infinitesimal shear-relaxation modulus. We do not believe that there would be any objection if we referred to such quantities as “rheological quantities” and to relations among them as “rheological relations”.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Coleman, B. D. and H. Markovitz, Arch. Rat. Mech. Anal. 17, 1 (1964).MathSciNetGoogle Scholar
  2. 2).
    Bernstein, B., E. A. Kearsley, and L. J. Zapus, Trans. Soc. Rheology 7, 391 (1963).ADSCrossRefzbMATHGoogle Scholar
  3. 3).
    Bernstein, B., Acta Mechanica 2, 329 (1966).CrossRefGoogle Scholar
  4. 4).
    Kaye, A., College of Aeronautics, Cranfield Note No. 134(1962).Google Scholar
  5. 5).
    Zapas, L. J. and T. Craft, J. Res. Nat. Bur. Standards U.S.A. 69 A, 541 (1965).CrossRefGoogle Scholar
  6. 6).
    Zapas, L. J., J. Res. Nat. Bur. Standards U.S.A. 70 A, 541 (1965).CrossRefGoogle Scholar
  7. 7).
    Zapas, L. J. and J. C. Phillips, J. Res. Nat. Bur. Standards U.S.A. 75 A, 33 (1971).CrossRefGoogle Scholar
  8. 8).
    Booij, H. C., Effect of Superimposed Steady Shear Flow on the Dynamic Properties of Polymeric Fluids. Doctoral Thesis, Leiden (1970).Google Scholar
  9. 9).
    Bernstein, B., Int. J. Nonlinear Mech. 4, 183 (1969).ADSCrossRefzbMATHGoogle Scholar
  10. 10).
    Bernstein, B. and R. L. Fosdick, Rheol. Acta 9, 186 (1970).CrossRefzbMATHGoogle Scholar
  11. 11).
    Booij, H. C., Rheol. Acta 5, 216 (1966).Google Scholar
  12. 12).
    Tanner, R. I. and G. W. Williams, Rheol. Acta 10, 528 (1971).Google Scholar
  13. 13).
    Bernstein, B. and R. R. Huilgol, Trans. Soc. Rheology 15, 731 (1972).ADSCrossRefGoogle Scholar
  14. 14).
    Bernstein, B., R. R. Huilgol, and R. I. Tanner, Int. J. Eng. Sci. 10, 263 (1972).CrossRefzbMATHGoogle Scholar
  15. 15).
    Simmons, J. M., Rheol. Acta 7, 184 (1968).CrossRefGoogle Scholar
  16. 16).
    Osaki, K., M. Tamura, M. Kurata, and T. Kotaka, J. Phys. Chem. 69, 4183 (1965).CrossRefGoogle Scholar
  17. 17).
    Kataoka, T. and S. Ueda, J. Polymer Sci. Part A2, 7, 475 (1969).CrossRefGoogle Scholar
  18. 18).
    Walters, K. and T. E. R. Jones, Proc. of Fifth Int. Cong. Rheology, edited by S. Onogi, 4, 337 (Univ. Park Press 1970).Google Scholar
  19. 19).
    Bernstein, B., Rheol. Acta 11, 210 (1972).CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Barry Bernstein
    • 1
  1. 1.Dept. of MathematicsIllinois Institute of TechnologyChicagoUSA

Personalised recommendations