Advertisement

Abstract

It has long been recognized that interesting features of viscoelastic materials can be revealed through study of the response of such materials to unsteady inputs. Indeed, most of the early work dealing with measurement of viscoelastic properties consisted of a study of the response of specimens to imposition of small-amplitude oscillatory stress or strain (1). Though much of the early work dealt with viscoelastic polymer solids, oscillatory testing has been extended to liquids, and there is now an extensive literature on the subject [see, for example, (2–5)]. However, by far the greatest interest to date has been in analyses and experiments which are restricted to a linear relation between input (for example, strain or strain rate) and output (for example, stress). This is the province of linear viscoelasticity, a subject which is now well developed and which has been quite successful for study of solid-like materials. Linear theory is insufficient, however, for characterization of many situations involving flow of liquid-like polymer melts, polymer solutions, and suspensions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Ferry, J. D., Viscoelastic Properties of Polymers (New York 1961).Google Scholar
  2. 2).
    Tanner, R. I. and J. M. Simmons, Chem. Eng. Sci. 22, 1803 (1967).CrossRefGoogle Scholar
  3. 3).
    Mac Donald, I. F., D. B. Marsh, and E. Ashore, Chem. Eng. Sci. 24, 1615 (1969).CrossRefGoogle Scholar
  4. 4).
    Jones, T. E. R. and K. Walters, J. Phys. A: Gen. Phys. 4, 85 (1971).ADSCrossRefGoogle Scholar
  5. 5).
    Dodge, J. S. and I. M. Krieger, Trans. Soc. Rheol. 15,589(1971).CrossRefGoogle Scholar
  6. 6).
    Barnes, H. A., K. Walters, and P. Townsend, Nature 224, 585 (1969).ADSCrossRefGoogle Scholar
  7. 7).
    Walters, K. and P. Townsend, Proc. 5th Int. Cong. on Rheol. Ed.: S. Onogi, Vol. 4, p. 471 (Tokyo 1970).Google Scholar
  8. 8).
    Barnes, H. A., P. Townsend, and K. Walters, Rheol. Acta 10, 517 (1971).Google Scholar
  9. 9).
    Schlichting, H., Boundary Layer Theory, 6th ed., p. 411 (New York 1968).Google Scholar
  10. 10).
    Batchelor, G. K., An Introduction to Fluid Dynamics, p. 363 (Cambridge Univ. Press 1967).Google Scholar
  11. 11).
    Coleman, B. D., H. Markovitz, and W. Noll, Viscometric Flows of Non-Newtonian Fluids (New York 1966).Google Scholar
  12. 12).
    Pipkin, A. C. and J. R. Owen, Phys. Fluids 10, 836 (1967).ADSCrossRefGoogle Scholar
  13. 13).
    Markovitz, H., Proc. 5th Int. Cong, on Rheol. Ed.: S. Onogi, Vol. 1, p. 499 (Tokyo 1969).Google Scholar
  14. 14).
    Bird, R. B. and P. J. Carreau, Chem. Eng. Sci. 23, 427 (1968).CrossRefGoogle Scholar
  15. 15).
    Oldroyd, J. G., Proc. Roy. Soc. A245, 278 (1958).Google Scholar
  16. 16).
    Oldroyd, J. G., Proc. Roy. Soc. A200, 523 (1950).ADSCrossRefMathSciNetGoogle Scholar
  17. 17).
    Booij, H. C, Rheol. Acta 5, 215 (1966).CrossRefGoogle Scholar
  18. 18).
    Booij, H. C, Rheol. Acta 5, 222 (1966).CrossRefzbMATHGoogle Scholar
  19. 19).
    Harris, J. and K. Bogie, Rheol. Acta 6, 3 (1967).CrossRefGoogle Scholar
  20. 20).
    Walters, K. and T E. R. Jones, Proc. 5th Int. Cong, on Rheol. Ed.: S. Onogi, Vol. 4, p. 337 (Tokyo 1970).Google Scholar
  21. 21).
    Onogi, S., Trans. Soc. Rheol. 14, 275 (1970).CrossRefGoogle Scholar
  22. 22).
    Dodge, J. S. and I. M. Krieger, Rheol. Acta 8, 480 (1969).CrossRefGoogle Scholar
  23. 23).
    Williams, M. C. and R. B. Bird, Ind. Eng. Chem. Fund. 3, 42 (1964).CrossRefGoogle Scholar
  24. 24).
    Coleman, B. D. and W. Noll, Rev. Mod. Phys. 33 239 (1961).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  25. 25).
    Spriggs, T. F., J. D. Huppler, and R. B. Bird, Trans. Soc. Rheol. 10, 191 (1966).CrossRefGoogle Scholar
  26. 26).
    Endo, H. and M. Nagasawa, J. Pol. Sci., Pt. A2, 8, 371 (1970).CrossRefGoogle Scholar
  27. 27).
    Goldstein, Charles, Ph. D. Thesis, Princeton University, Princeton, New Jersey 1971.Google Scholar
  28. 28).
    Philippoff, W., Trans. Soc. Rheol. 10, 316 (1966).Google Scholar
  29. 29).
    Tanner, R. I., Trans. Soc. Rheol. 12, 155 (1968).CrossRefGoogle Scholar
  30. 30).
    Osaki, K, M. Tamura, M. Kurata, and T Kotaka, J. Phys. Chem. 69, 4183 (1965).CrossRefGoogle Scholar
  31. 31).
    Mac Donald, I. F. and R. B. Bird, J. Phys. Chem. 70, 2068 (1966).CrossRefGoogle Scholar
  32. 32).
    Tanner, R. I. and G. Williams, Rheol. Acta 10, 528 (1971).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Charles Goldstein
    • 1
    • 2
    • 3
  • W. R. Schowalter
    • 1
  1. 1.Department of Chemical EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Research & Engineering Division Whirlpool CorporationBenton HarborUSA
  3. 3.AkronUSA

Personalised recommendations