Advertisement

Abstract

Sinusoidal shearing is a common method of investigating the dynamic behavior of materials. The rate of deformation and the resulting forces monitored in such oscillatory tests are time dependent. The eccentric rotating disks (ERD) or orthogonal rheometer is a geometry that has the ability to characterize the dynamic properties of materials by employing a deformation that is steady in time with resulting steady forces. This eliminates the need for separating the in-phase and out-of-phase components of the sinusoidal stress monitored in oscillatory tests.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Gent, A. N., Brit. J. Appl. Phys. 11, 165 (1960).ADSCrossRefGoogle Scholar
  2. 2).
    Mooney, M., J. Appl. Phys. 35, 23 (1964).ADSCrossRefGoogle Scholar
  3. 3).
    Maxwell, B. and R. P. Chartoff Trans. Soc. Rheol. 9:1, 41 (1965).Google Scholar
  4. 4).
    Chartoff R. P. and B. Maxwell, Polymer Eng. and Sci. 8, 126 (1968).CrossRefGoogle Scholar
  5. 5).
    Maxwell, B., Polymer Eng. and Sci. 7, 145 (1967).CrossRefGoogle Scholar
  6. Maxwell, B., Polymer Eng. and Sci. 8, 252 (1968).CrossRefGoogle Scholar
  7. 6).
    Blyler jr., L. L. and S. J. Kurtz, J. Appl. Phys. 11, 127 (1967).Google Scholar
  8. 7).
    Bird, R. B. and E. K. Harris jr., Amer. Inst. Chem. Eng. J. 14, 758 (1968).CrossRefGoogle Scholar
  9. Bird, R. B. and E. K. Harris jr., Amer. Inst. Chem. Eng. J. 16, 149 (1970).CrossRefGoogle Scholar
  10. 8).
    Huilgol, R. R., Trans. Soc. Rheol 134, 513 (1969).CrossRefGoogle Scholar
  11. 9).
    Yamamoto, M., Japan. J. Appl. Phys. 8, 1252 (1969).ADSCrossRefGoogle Scholar
  12. 10).
    Gordon, R. J. and W. R. Schowalter, Amer. Inst. Chem. Eng. J. 16, 318 (1970).CrossRefGoogle Scholar
  13. 11).
    Abbott, T. N. G. and K. Walters, J. Fluid Mech. 40, Part 1, 205 (1970).ADSCrossRefzbMATHGoogle Scholar
  14. 12).
    Goldstein, C., Unsteady Flows of Viscoelastic Fluids: Non Linear Effects, Ph. D. Thesis, Dept. Chem. Eng., Princeton University (1971).Google Scholar
  15. 13).
    Davis, W. M. and C. W. Macosko, Amer. Inst. Chem. Eng. J. 16, 600 (1974).CrossRefGoogle Scholar
  16. 14).
    Macosko, C. W., Comparisons of Dynamic and Steady Flow Measurements for Polymer Melts. Ph. D. Thesis, Dept. Chem. Eng., Princeton University (1970). Univ. Microfilms, Ann Arbor, Michigan.Google Scholar
  17. 15).
    Macosko, C. W. and J. M. Starita, SPE J. 27, 38 (Nov. 1971), and SPE Tech. Papers 17. 595 (1971). and ASTM STP 553, Am. Soc. Testing Mat., p. 127 (Phila 1974).Google Scholar
  18. 16).
    Private communication with A. C. Martellock, General Electric, Waterford New York, 1969.Google Scholar
  19. 17).
    Private communication with W. M. Prest, Univ. Mass., Amherst 1970. Data was taken by Prest and J. M. O’Reilly at General Electric, Schenedtady, N. Y. (USA).Google Scholar
  20. 18).
    Private communication with James Reid, Phillips Petroleum, Bartlesville, Oklahoma 1969.Google Scholar
  21. 19.
    Private communication with K. S. Hyun, Dow Chemical, Midland, Mich. (1970).Google Scholar
  22. 20).
    Ginn, R. F. and A. B. Metzner, Trans. Soc. Rheol. 13, 429 (1969).CrossRefGoogle Scholar
  23. 21).
    Tanner, R. I. and G. Williams, Rheol. Acta 10, 528 (1971).Google Scholar
  24. Tanner, R. I. and G. Williams, Ph. D. Thesis, Dept. Mech., Brown University (1971).Google Scholar
  25. 22).
    Landel, R. F., in: A. S. Chompff and S. Newman (Ed.), Polymer Networks, Structure and Mechanical Properties, p. 219 (New York 1971).Google Scholar
  26. 23).
    Gross, L. H. and B. Maxwell, Trans. Soc. Rheol. 16, 577 (1972).CrossRefGoogle Scholar
  27. 24).
    Gillman, M. W., An Experimental Study of the Velocity Field in the Maxwell Orthogonal Rheometer. M.S. Thesis, Rensselaer Polytechnic Inst. Troy, N. Y. 1972.Google Scholar
  28. 25).
    Erhardt, P. F., J. J. O’Malley, and R. C. Crystal, Polymer Preprints 10, 812 (1969).Google Scholar
  29. 26).
    Private communication with P. F. Erhardt, Xerox, Webster, New York 1970.Google Scholar
  30. 27).
    Kepes, A., Presented before the Fifth International Congress of Rheology, Kyoto, Oct. 1968, unpublished.Google Scholar
  31. 28).
    Kaelble, D. H., J. Appl. Polymer Sci. 13, 2547 (1969).CrossRefGoogle Scholar
  32. 29).
    Jones, T. E. R. and K. Walters, Brit. J. Appl. Phys. (J. Phys. D) 2, 815 (1969).ADSCrossRefGoogle Scholar
  33. 30).
    Walters, K., J. Fluid Mech. 40, 191 (1970).ADSCrossRefzbMATHGoogle Scholar
  34. 31).
    Wales, J. L. S. and J. L. den Otter, Rheol. Acta 9, 115 (1970). Data obtained in tabular form from the authors.CrossRefGoogle Scholar
  35. 32).
    Wales, J. L. S., Rheol. Acta 8, 38 (1969).CrossRefGoogle Scholar
  36. 33).
    Davis, W. M. and C. W. Macosko, Experimental Examination of Several Eccentric Rotating Geometries. Society of Rheology, Montreal 1973.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • C. W. Macosko
    • 1
  • W. M. Davis
    • 1
  1. 1.Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA

Personalised recommendations