Extensive work has been done on the effect of the introduction of low molecular weight liquids (plasticizers) into high molecular weight polymer systems (1–3). By plasticizing, one in effect decreases the chain-chain interactions that are present in the bulk. This has been described by a free volume model (4, 5). The examination of plasticized systems leads to information regarding the polymer structure in very concentrated solution. The aims of this investigation are to compare the viscoelastic properties of the plasticized system for solvents of differing thermodynamic compatibility, and to examine the phenomenon of molecular plasticization as contrasted to plasticization of supermolecular or secondary structure (6, 7).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Ferry, J. D., Viscoelastic Properties of Polymers (New York 1961).Google Scholar
  2. 2).
    Bondi, A., Physical Properties of Molecular Crystals, Liquids and Glasses (New York 1968).Google Scholar
  3. 3).
    Platzer, N. A. J., (Ed.), Plasticization and Plasticizer Processes (Amer. Chem. Soc, Washington, D. C, 1965).Google Scholar
  4. 4).
    Kelly, F. N. and F. Bueche, J. Polymer Sci. 50, 549 (1961).ADSCrossRefGoogle Scholar
  5. 5).
    Braun, G. and A. J. Kovacs, Physics of non-crystalline Solids, Proceedings of the International Conference, Delft, July 1964, p. 303 (Amsterdam 1965).Google Scholar
  6. 6).
    Kargin, V. A., P. V. Kozlov, and R. M. Assimova, Doklady Akademii Nauk SSR, 1352, 1037 (1960) (p. 357 in Russ. pag.).Google Scholar
  7. 7).
    Kargin, V. A. and A. I. Kitaigorodsky, Kolloid Zh. 19, 141 (1957) (p. 131 in Russ. pag.).Google Scholar
  8. 8).
    Kiley, L. R., Anal. Chem. 29, 1895 (1957).CrossRefGoogle Scholar
  9. 9).
    Martin, A. E. and H. F. Rase, I & EC Product Res. Development 6, 104 (1967).Google Scholar
  10. 10).
    Ferry, J. D., Viscoelastic Properties of Polymers, p. 356 (New York 1961).Google Scholar
  11. 11).
    Iiters, K. H and E. Jenckel, Rheol. Acta 1, 322 (1958).CrossRefGoogle Scholar
  12. 12).
    Quadrat, O. and M. Bohdanecký, J. Polymer Sci. C6, 769 (1968).CrossRefGoogle Scholar
  13. 13).
    Carpenter, M. R., D. B. Davies, and A. J. Matheson, J. Chem. Phys. 46, 2451 (1967).ADSCrossRefGoogle Scholar
  14. 14).
    Struik, L. C. E., Rheol. Acta 5, 303 (1966).CrossRefGoogle Scholar
  15. 15).
    Turley, S. G., J. Polym. Sci., C 1, 101 (1963).CrossRefGoogle Scholar
  16. 16).
    Tobolsky, A. V., J. J. Aklonis, and G. Akovali, J. Chem. Phys. 42, 723 (1965).ADSCrossRefGoogle Scholar
  17. 17).
    Hopkins, I. L. and R. W. Hamming, J. Appl. Phys. 28, 906 (1957).ADSCrossRefGoogle Scholar
  18. 18).
    Chapoy, L. L. and A. V. Tobolsky, Chemica Scripta 2, 44 (1972).Google Scholar
  19. 19).
    Kishimoto, A., H. Fujita, J. Polym. Sci. 28, 547 (1958).ADSCrossRefGoogle Scholar
  20. 20).
    Kishimoto, A. and H. Fujita, J. Polym. Sci. 28, 569 (1958).ADSCrossRefGoogle Scholar
  21. 21).
    Gribkova, N. Ya., P. V. Kozlov, and S. V. Yakubovich, Polym. Sci. U.S.S.R. 7, 831 (1965).CrossRefGoogle Scholar
  22. 22).
    Kargin, V. A., P. V. Kozlov, and Wang Nai-Ch’ang, Doklady Akademii Nauk SSR 130, 33 (1960) (p. 356 in Russ. pag.).Google Scholar
  23. 23).
    Kargin, V.A., Russian Chem. Rev. 35, 427 (1966).ADSCrossRefGoogle Scholar
  24. 24).
    Natov, M. A. and Ye. Khr. Dzhagarova, Polym. Sci. U.S.S.R. 8, 2032 (1966).CrossRefGoogle Scholar
  25. 25).
    Dreval, V. Ye., M. S. Lutskii, A. A. Tager, V. K. Postikov, O. S. Khvatova, and G. V. Vinogradov, Polym. Sci. U.S.S.R. 9, 345 (1967).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • L. Lawrence Chapoy
    • 1
    • 2
  1. 1.Instituttet for KemiindustriDanmarks Tekniske HøjskoleLyngbyDanmark
  2. 2.Frick Chemical LaboratoryPrincetonUSA

Personalised recommendations