Conformational study by intrinsic viscosities of the starch-iodine complex

  • Joan-Nan Liang
  • C. J. Knauss
  • R. R. Myers


Extensive studies (1–4) of the structure of starch have not been paralleled by studies of the starch-iodine complex beyond the knowledge that the iodine molecule is located within the helix. Rundle et al. (5) proposed that an induced dipole results when iodine molecules are placed inside the helix, where they interact with the field provided by the hydroxyl groups. By contrast, Greenwood et al. (4) proposed a direct oxygen-iodine interaction based on the generation of infrared absorption peaks in the C-O stretching region in the spectra of the solution of iodine in amylose in the dry state. According to a third view (2) the iodine in a complex is simply dissolved in a hydrocarbon solvent.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Hanes, C. S., New Phytologist 36, 101, 189 (1937).CrossRefGoogle Scholar
  2. 2).
    Freudenberg, K., E. Schaaf, G. Dumpert, and T. Ploetz, Naturwiss. 27, 850 (1939).ADSCrossRefGoogle Scholar
  3. 3)a).
    Rundle, R. E. and R. R. Baldwin, J. Amer. Chem. Soc. 65, 554 (1943).CrossRefGoogle Scholar
  4. b).
    Rundle, R. E. and Dexter French, J. Amer. Chem. Soc. 65, 558 (1943).CrossRefGoogle Scholar
  5. c).
    Rundle, R. E., J. Amer. Chem. Soc. 69, 1769 (1947).CrossRefGoogle Scholar
  6. 4).
    Greenwood C. T. and Hazet Rossetti, J. Polymer Sci. 17, 481 (1958).CrossRefGoogle Scholar
  7. 5)a).
    Rundle, R. E., J. F. Foster, and R. R. Baldwin, J. Amer. Chem. Soc. 66, 2116 (1944).CrossRefGoogle Scholar
  8. b).
    Stein, R. S. and R. E. Rundle, J. Chem. Phys. 16, 195 (1948).ADSCrossRefGoogle Scholar
  9. 6).
    Huggins, M. L., J. Amer. Chem. Soc. 64, 2716 (1942).CrossRefGoogle Scholar
  10. 7).
    Frisch, H. L. and Robert Simha, in: F. R. Eirich (Ed.), Rheology, Vol. 1, p. 525 (New York 1956).Google Scholar
  11. 8).
    Moore, W. R., in: A. D. Jenkins (Ed.), Progress in Polymer Science, Vol. 1, p. 3 (Oxford, New York 1967).Google Scholar
  12. 9).
    Huggins, M. L., J. Phys. Chem. 42, 911 (1938).CrossRefGoogle Scholar
  13. 10).
    Huggins, M. L., J. Phys. Chem. 43, 439 (1939).CrossRefGoogle Scholar
  14. 11).
    Huggins, M. L., J. Appl. Phys. 10, 700 (1939).ADSCrossRefGoogle Scholar
  15. 12).
    Huggins, M. L., Physical Chemistry of High Polymers (New York, N. Y. 1958).Google Scholar
  16. 13).
    Manson, J. A. and L. H. Cragg, Canad. J. Chem. 30, 482 (1952).CrossRefGoogle Scholar
  17. 14).
    Doty, P., H. Wagner, and S. Singer, J. Phys. Colloid Chem. 51, 32 (1947).CrossRefGoogle Scholar
  18. 15).
    Schoch, T. J., in: S. P. Colowick and N. O. Kaplan (Eds.), Methods in Enzymology, Vol. III, p. 5 (New York 1957).Google Scholar
  19. 16).
    Bauer, A. W. and E. Pacsu, Textile Res. J. 13, No. 12, 864 (1953).CrossRefGoogle Scholar
  20. 17).
    Rao, V. S. and Joseph F. Foster, Biopolymer 1, 527 (1963).CrossRefGoogle Scholar
  21. 18).
    Erlander, S. R. and R. Tobin, Makromol. Chem. 111, 212 (1968).CrossRefGoogle Scholar
  22. 19).
    Eirich, E. and J. Risman, J. Polymer Sci. 4, 417 (1949).ADSCrossRefGoogle Scholar
  23. 20).
    Khairy, M., S. Morsi, and C. Sterling, J. Appl. Polymer Sci. 10, 928 (1966).CrossRefGoogle Scholar
  24. 21).
    Burchard, W., Makromol. Chem. 64, 110 (1963).CrossRefGoogle Scholar
  25. 22).
    Cowie, J. M. G., Makromol. Chem. 53, 13 (1962).CrossRefGoogle Scholar
  26. 23).
    Moore, W. R. and A. M. Brown, J. Colloid Sci. 14, 343 (1959).CrossRefGoogle Scholar
  27. 24).
    Moore, W. R. and D. Sanderson, Polymer 9, 153 (1968).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Joan-Nan Liang
    • 1
  • C. J. Knauss
    • 1
  • R. R. Myers
    • 1
  1. 1.Department of ChemistryKent State UniversityKentUSA

Personalised recommendations