Advertisement

Abstract

Previous work (1–4) dealt with a random theory of deformation based on the concepts of statistical mechanics and the theory of probability. This paper is concerned with the microrheology of a 2-dimensional fibrous system as indicated in fig. 1a, b. A mathematical model is proposed that contains the aspects of bonding between fibres.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Axelrad, D. R. and L. G. Jaeger, Random Theory of Deformation in Heterogeneous Media. In: Structure Solid Mechs. and Engineering Design, Part 1, p. 571–578 (J. Wiley, London-New York 1970).Google Scholar
  2. 2).
    Axelrad, D. R., Random Theory of Deformation of Structured Media. Int. Centre of Mech. Sciences, Udine, Italy (1972).Google Scholar
  3. 3).
    Axelrad, D. R., Proc. 5th Int. Cong, on Rheology 2, 221–231 (Tokyo 1970).Google Scholar
  4. 4).
    Axelrad, D. R., Arch. Mech. Stosowanej 3, 131–140 (1971).Google Scholar
  5. 5).
    Yaglom, A. M., Theory of Stationary Random Functions (1962).Google Scholar
  6. 6).
    Ziegler, H., Some Extremum Principles in Irreversible Thermodynamics with Application to Continuum Mechanics. In: Progress in Solid Mechs. 4 (Amsterdam 1963).Google Scholar
  7. 7).
    Goux, C. et al., Theoretical and Experimental Determinations of a Grain Boundary. Int. Conf. on the Structure and Properties of Grain Boundaries, IBM Watson Research Center, N. Y. State, Aug. 23-25,1971.Google Scholar
  8. 8).
    Sternstein, S. S. and A. M. Nissan, A Molecular Theory of the Visco-Elasticity of a Three-Dimensional Hydrogen-Bonded Network. In: Formation and Structure of Paper 1. Ed.: F. Bolam, Technical Sec. (London 1962).Google Scholar
  9. 9).
    Gel’fand, I. M. and N. Y a. Vilenkin, Generalized Functions Vol. 4 (London-New York 1964).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • D. R. Axelrad
    • 1
  • D. Atack
    • 2
  • J. W. Provan
    • 3
  1. 1.Micromechanics Lab.McGill UniversityMontrealCanada
  2. 2.Pulp & PaperResearch Institute of CanadaPointe ClaireCanada
  3. 3.Micromechanics Lab.McGill UniversityMontrealCanada

Personalised recommendations