Advertisement

Abstract

It was reported by Stewart (1) that when the liquid crystal p-azoxyanisole was placed in a vertical temperature gradient the molecular orientation adopted was vertical when the higher temperature was at the bottom and horizontal when the higher temperature was at the top. These observations were confirmed by Holland and Stewart (2), Stewart, Holland, and Reynolds (3), and Stewart (4), the latter stressing that the horizontal orientation was not produced by convection currents; in fact the horizontal orientation was observed only when the vertical convection currents were reduced as much as possible. More recently, Picot and Fredrickson (5) und Fisher and Fredrickson (6) have doubted that a temperature gradient can exert an orienting influence, while Patharkor, Rajan, and Picot (7) give experimental evidence suggesting that such an influence may exist.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Stewart, G. W., J. Chem. Phys. 4, 231 (1936).ADSCrossRefGoogle Scholar
  2. 2).
    Holland, D. O. and G. W. Stewart, Phys. Rev. 51, 62 (1937).Google Scholar
  3. 3).
    Stewart, G. W., D. O. Holland, and L. M. Reynolds, Phys. Rev. 58, 174 (1940).ADSCrossRefGoogle Scholar
  4. 4).
    Stewart, G. W., Phys. Rev. 69, 51 (1946).CrossRefGoogle Scholar
  5. 5).
    Picot, J. J. C. and A. G. Fredrickson, I and EC Fundamentals 1, 84 (1968).CrossRefGoogle Scholar
  6. 6).
    Fisher, J. and A. G. Fredrickson, Mol. Cryst. and Liq. Cryst. 6, 255 (1969).Google Scholar
  7. 7).
    Patharkar, M. N., V. S. V. Rajan, and J. J. C. Picot, Mol. Cryst. and Liq. Cryst. 15, 225 (1971).CrossRefGoogle Scholar
  8. 8).
    Leslie, F. M., Arch. Rat. Mech. Anal. 28, 265 (1968).CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9).
    Leslie, F. M., Proc. Roy. Soc. A 307, 359 (1968).ADSCrossRefGoogle Scholar
  10. 10).
    Leslie, F. M., Mol. Cryst. Liq. Cryst. 7, 407 (1969).Google Scholar
  11. 11).
    Stuart, J. T., Hydrodynamic stability. Chap IX of Laminar Boundary Layers. Ed.: L. Rosenhead (Oxford 1963).Google Scholar
  12. 12).
    Leslie, F. M., Quart. J. Mech. Appl. Math. 19, 357 (1966).CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13).
    Ericksen, J. L., Phys. Fluids 9, 1205 (1966).ADSCrossRefGoogle Scholar
  14. 14).
    Longley-Cook, M. and J. O. Kessler, Mol. Cryst. and Liq. Cryst. 12, 315 (1971).CrossRefGoogle Scholar
  15. 15).
    Hoyer, W. A. and A. W. Nolle, J. Chem. Phys. 24, 803 (1956).ADSCrossRefGoogle Scholar
  16. 16).
    Porter, R. S. and J. F. Johnson, J. Phys. Chem. 66, 1826 (1962).CrossRefGoogle Scholar
  17. 17).
    Currie, P. K., The propagation and adsorption of small-amplitude waves in incompressible nematic liquid crystals (unpublished).Google Scholar
  18. 18).
    Martinoty, P. and S. Candau, Mol. Cryst. Liq. Cryst. 14, 243 (1971).CrossRefGoogle Scholar
  19. 19).
    Orsay Liquid Crystal Group, Mol. Cryst. Liq. Cryst. 13, 187 (1971).CrossRefGoogle Scholar
  20. 20).
    Gähwiller, Ch., Phys. Rev. Letters 28, 1554 (1972).ADSCrossRefGoogle Scholar
  21. 21).
    Saupe, A., Z. Naturforschung 15A, 815 (1960).ADSGoogle Scholar
  22. 22).
    Chandrasekhar, S., Hydrodynamic and hydro-magnetic stability 4 (Oxford 1961).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • P. K. Currie
    • 1
  1. 1.School of Physical SciencesThe New University of UlsterColeraineNorthern Ireland

Personalised recommendations