On the use of open-channel flows to measure the second normal stress difference

  • Y. Kuo
  • R. I. Tanner


In steady isothermal shearing flow of an incompressible viscoelastic fluid, the fluid behavior is completely determined by three viscometric functions (Pipkin, 1972); they are the viscosity function η, the first normal stress difference N 1 and the second normal stress difference N 2.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, N. and A. S. Lodge, Phil. Trans. Roy. Soc. (London) A256, 149 (1964).ADSCrossRefGoogle Scholar
  2. Berry, J. P. and J. Batchelor, in: Polymer Systems (R. E. Wetton and R. W. Whorlow, eds.) (London 1968).Google Scholar
  3. Brindley, S. and J. M. Broadbent, Rheol. Acta 12, 48 (1973).CrossRefGoogle Scholar
  4. Cowsley, C. W., Improvements to total thrust methods for the measurement of second normal stress difference, Univ. of Cambridge, Dept. of Chem. Engrg. Polymer Processing Res. Centre, Report No. 6 (1970).Google Scholar
  5. Denn, M. M. and J. J. Roisman, Amer. Inst. Chem. Eng. J. 15, 454 (1969).CrossRefGoogle Scholar
  6. Garner, F. H., A. H. Nissan, and G. F. Wood, Phil. Trans. Roy. Soc. (London) A 243, 37 (1950).ADSCrossRefGoogle Scholar
  7. Greensmith, H. W. and R. S. Rivlin, Phil. Trans. Roy. Soc. (London) A 245, 399 (1953).ADSCrossRefGoogle Scholar
  8. Ginn, R. F. and A. B. Metzner, Proc. 4th Int. Rheol. Congr., Part 2, 583 (New York 1965).Google Scholar
  9. Ginn, R. F. and A. B. Metzner, Trans. Soc. Rheol. 13, 429 (1969).CrossRefGoogle Scholar
  10. Hayes, J. W. and R. I. Tanner, Proc. of the 4th Inter. Congr. on Rheology, Part 3, ed. by E. H. Lee, p. 389 (New York 1965).Google Scholar
  11. Huppler, J. D., Trans. Soc. Rheol. 9, 273 (1965).CrossRefGoogle Scholar
  12. Huppler, J. D., E. Ashare, and L. A. Holmes, Trans. Soc.Rheol. 11, 159 (1967).CrossRefGoogle Scholar
  13. Jackson, R. and A. Kaye, Brit. J. Appl. Phys. 17, 1355 (1966).ADSCrossRefGoogle Scholar
  14. Kaye, A., A. S. Lodge, and D. G. Vale, Rheol. Acta 7, 368 (1968).CrossRefGoogle Scholar
  15. Kearsley, E. A., Rheol. Acta 12, 546 (1973).CrossRefGoogle Scholar
  16. Kotaka, T., M. Kurata, and M. Tamara, J. Appl. Phys. 30, 1705 (1959).ADSCrossRefGoogle Scholar
  17. Kuo, Y., The Determination of the Second Normal Stress difference in Viscoelastic Flows. Ph. D. Thesis, Brown University (1973).Google Scholar
  18. Kuo, Y. and R. I. Tanner, Intl. J. of Mech. Science 14, 861 (1972).CrossRefzbMATHGoogle Scholar
  19. Lobo, P. and H. R. Osmers, Rheol. Acta 13, 457 (1974).CrossRefGoogle Scholar
  20. Macosko, C, Flow of polymer melts between eccentric rotating disks. Report, Dept. of Chem. Engrg., Princeton Univ. (1970).Google Scholar
  21. Markovitz, H. and D. R. Brown, Trans. Soc. Rheol. 7, 137 (1963).CrossRefGoogle Scholar
  22. Markovitz, H. and D. R. Brown, Second-order effects in elasticity, plasticity and fluid dynamics. Int. Symp. Haifa (1962), Macmillan Co. (1964).Google Scholar
  23. Marsh, B. D. and J. R. A. Pearson, Rheol. Acta 7, 326 (1968).CrossRefGoogle Scholar
  24. Miller, M. J. and E. B. Christiansen, Amer.Inst. Chem. Eng. J. 18, 600 (1972).CrossRefGoogle Scholar
  25. Montgomery, W. H., Water-soluble resins. Edited by R. L. Davidson and M. Sitting (New York 1963).Google Scholar
  26. Moore, W. J., Physical Chemistry (Prentice-Hall 1962).Google Scholar
  27. Olabisi, O. and M. C. Williams, Trans. Soc. Rheol. 16, 727 (1972).CrossRefGoogle Scholar
  28. Pipkin, A.C., Lectures on viscoelasticity theory (New York 1972).Google Scholar
  29. Pollett, W. F. O., Brit. J. Appl. Phys. 6, 199 (1955).ADSCrossRefGoogle Scholar
  30. Pritchard, W. G., Phil. Trans. Roy. Soc. (London) A 270, 507 (1971).ADSCrossRefGoogle Scholar
  31. Roberts, J. E., Proc. Second Intl. Congr. Rheol. (New York 1953).Google Scholar
  32. Sakiadis, B. C, Amer. Inst. Chem. Eng. J. 8, 317 (1962).CrossRefGoogle Scholar
  33. Tanner, R. L, Trans. Soc. Rheol. 11, 347 (1967).CrossRefGoogle Scholar
  34. Tanner, R. I. and A. C. Pipkin, Trans. Soc. Rheol. 13, 471 (1969).CrossRefGoogle Scholar
  35. Tanner, R. I., Trans. Soc. Rheol. 14, 483 (1970).CrossRefzbMATHGoogle Scholar
  36. Tanner, R. L, Trans. Soc. Rheol. 17, 365 (1973).CrossRefGoogle Scholar
  37. Williams, G., Dynamic response of dilute polymer solutions in a shear flow. Ph. D. Thesis, Brown University (1971).Google Scholar
  38. Weissenberg, K, Nature 159, 310 (1947).ADSCrossRefGoogle Scholar
  39. Yin, W.-L. and A. C. Pipkin, Arch. Ratl. Mech. Anal. 37, 111 (1970).CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Y. Kuo
    • 1
  • R. I. Tanner
    • 1
  1. 1.Division of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations