On physical measures of rheological responses of some materials in wide ranges of temperature and spectral frequency

  • T. Jerzy
  • Peter Straka


The major problem in applied sciences, with regard to the response of materials to loads, is the degree of correlation between actual material response and the predictions of corresponding mathematical model or models presented in a form of constitutive equations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Tiller, W. A., Science 165, 469–475 (1965).ADSCrossRefGoogle Scholar
  2. 2).
    Alfrey, T., Mechanical Behaviour of High Polymers (New York 1948).Google Scholar
  3. 3).
    Stuart, H. A., Die Physik der Hochpolymeren (Berlin-Heidelberg-New York 1956).Google Scholar
  4. 4).
    Persoz, B., Introduction a l’étude de la rhéologie (Paris 1960).Google Scholar
  5. 5).
    Flügge, W., Viscoelasticity (Verlagsort 1967).Google Scholar
  6. 6).
    Mindlin, R. D., Appl. Phys. 20, 206–216 (1949).CrossRefzbMATHGoogle Scholar
  7. 7).
    Nowacki, W., Theorie du Fluage (Paris 1965).Google Scholar
  8. 8).
    Dill, E. H., Polymer Sci. Part C 5, 67–74 (1964).Google Scholar
  9. 9).
    Green, A. E. and R. S. Rivlin, Arch, ration Mech. Analysis 1, 1–27 (1957).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10).
    Green, A. E., R. S. Rivlin, and A. J. M. Spencer, Archs. ration Mech. Analysis 3, 82–90 (1959).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11).
    Green, A. E. and R. S. Rivlin, Archs. ration Mech. Analysis 4, 387–404 (1960).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12).
    Drescher, A. and K. Kwaszcynska, J. Non-Linear Mech. 5, 11–22 (1970).CrossRefGoogle Scholar
  13. 13).
    Kolsky, H., in: H.A. Stuart, Die Physik der Hochpolymeren, Bd. 4 (Berlin-Heidelberg-New York 1956).Google Scholar
  14. 14).
    Hiltscher, R., VDI-Z 23 (1953).Google Scholar
  15. 15).
    Pindera, J. T., Rozprawy Inzynierskie 1959, No. 3.Google Scholar
  16. 16).
    Read, B. E., J. Polymer Sci., Part C 5, 87–100 (1964).CrossRefGoogle Scholar
  17. 17).
    Pindera, J. T. and E. W. Riesling, On the Linear Range of Behavior of Photoelastic and Model Materials. Proceedings of the Third International Conference on Stress Analysis, March 1966, Berlin, VDI-Berichte, No. 102, 1966.Google Scholar
  18. 18).
    Pindera, J. T. and G. L. Cloud, Exp. Mechanics 6, 470–480 (1966).CrossRefGoogle Scholar
  19. 19).
    Pindera, J. T. and P. Straka, Mechanical and Dielectric Rheological Responses of Some High Polymers in a Wide Temperature and Spectral Frequency Ranges. Proceedings, Int. Symposium on Exp. Mechanics, Univ. of Waterloo, 1972; Experimental Mechanics in Research and Development. Study No. 9. Solid Mechanics Division, 1973.Google Scholar
  20. 20).
    Pindera, J. T. and N. K. Sinha, On the Studies of Residual Stresses in Glass Plates. Exp. Mechanics, March 1971.Google Scholar
  21. 21).
    Pindera, J. T. and Y. Sze, Trans. CSME 1, No. 2 (1972).Google Scholar
  22. 22).
    Pindera, J. T. and A. R. Krishnamurthy, Foundation of Flow Birefringence in some Liquids. Proceedings of International Symposium on Exp. Mechanics, Univ. of Waterloo 1972: Experimental Mechanics in Research and Development. Study No. 9. Solid Mechanics Division, 1973.Google Scholar
  23. 23).
    Pindera, J. T., On the Physical Basis of Modern Photoelasticity Techniques. Beiträge zur Spannungsund Dehnungsanalyse, Vol. V (Berlin 1968).Google Scholar
  24. 24).
    Cloud, G. L., Exp. Mechanics, November 1969.Google Scholar
  25. 25).
    Ramachandra, G. N., Crystal Optics. In: Encyclopedia of Physics. Edited by S. Flügge, Vol. XXV/1 (Berlin-Heidelberg-New York 1961).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • T. Jerzy
    • 1
  • Peter Straka
    • 1
  1. 1.Experimental Mechanics Laboratory, Department of Civil EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations