Advertisement

Abstract

At very low stress levels (< 1 kbar), the short time response of polymeric materials is described as “glassy” and they are often modeled using linear elasticity. However, at higher stress levels, such simple models may not be applicable. The purpose of this paper is to present experimental observations of wave propagation in polymethyl methacrylate (PMMA) up to 60 kbar which indicate that such materials exhibit considerable non-linearities as well as significant rate-dependence. We compare numerical calculations based on both nonlinear elastic and nonlinear viscoelastic models with these observations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1)).
    Barker, L. M. and R. E. Hollenbach, Rev. Sci. Instr. 35, 742 (1964).ADSCrossRefGoogle Scholar
  2. 2).
    May, R. P., Description of the Sandia Laboratories Research Multi-Purpose, Hypervelocity Gun Facility, Sandia Laboratories Rept. DR-72-0180 (1972), Albuquerque, New Mexico.Google Scholar
  3. 3).
    Barker, L. M., Fine Structure of Compressive and Release Wave Shapes in Aluminum Measured by the Velocity Interferometer Technique. In: Proc. IUTAM Symp. on High Dynamic Pressure, p. 483 (1968).Google Scholar
  4. 4)).
    Barker, L. M. and R. E. Hollenbach, J. Appl. Phys. 41, 4208 (1970).ADSCrossRefGoogle Scholar
  5. 5)).
    Schuler, K. W., J. Mech. Phys. Solids 18, 277 (1970).ADSCrossRefGoogle Scholar
  6. 6).
    Nunziato, J. W. and K. W. Schuler, J. Mech. Phys. Solids (in press).Google Scholar
  7. 7).
    Schuler, K. W., The Speed of Propagation of Release Waves in Polymethyl Methacrylate. In: Proc. Fifth Internat. Symp. on Detonation (1970).Google Scholar
  8. 8)).
    Nunziato, J. W., K. W. Schuler, and E. K. Walsh, Trans. Soc. Rheol. 16, 15 (1972).CrossRefzbMATHGoogle Scholar
  9. 9)).
    Coleman, B. D. and W. Noll, Rev. Mod. Phys. 33, 239 (1961); erratum ibid, 36, 1103 (1964).MathSciNetGoogle Scholar
  10. 10).
    Nunziato, J. W. and H. J. Sutherland, J. Appl. Phys. 1973, 184.Google Scholar
  11. 11).
    Herrmann, W. and J. W. Nunziato, Nonlinear Constitutive Equations. In: Dynamic Response of Materials Under Impulsive Loading, p. 123 (1973).Google Scholar
  12. 12)).
    Greenberg, J. M., Quart. Appl. Math. 26, 27 (1968).zbMATHGoogle Scholar
  13. 13).
    Herrmann, W., Nonlinear Stress Waves in Metals. In: Proc. ASME Symp. on Wave Propagation in Solids, p. 129 (1970).Google Scholar
  14. 14)).
    Asay, J. R., D. L. Lamberson, and A. H. Guenther, J. Appl. Phys. 40, 1768 (1969).ADSCrossRefGoogle Scholar
  15. 15).
    Lawrence, R. J., A General Viscoelastic Constitutive Relation for Use in Wave Propagation Calculations, Sandia Laboratories Rept. RR-72-0114 (1972), Albuquerque, New Mexico.Google Scholar
  16. 16).
    Barker, L. M., SWAP-9: An Improved Stress Wave Analyzing Program. Sandia Laboratories Rept. RR-69-233 (1969), Albuquerque, New Mexico.Google Scholar
  17. 17)).
    Davis, L. A. and C. A. Pampillo, J. Appl. Phys. 42, 4659 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • K. W. Schuler
    • 1
  • J. W. Nunziato
    • 1
  1. 1.Sandia LaboratoriesAlbuquerqueUSA

Personalised recommendations