Advertisement

Enzyme pp 354-368 | Cite as

The amidases

  • David M. Greenberg
Chapter
Part of the Handbuch der Physiologisch- und Pathologisch-Chemischen Analyse book series (HOPPE-SEYLER)

Zusammenfassung

Under this heading there is generally grouped a heterogeneous collection of enzymes that catalyse the hydrolysis of the carbon-nitrogen bond of certain chemically dissimilar compounds. The following enzymes of this category will be discussed in this work: arginase, urease, and the enzymes that hydrolyse certain carboxylic acid and amino acid amides, in particular, asparaginase and glutaminase. Treatment of other enzymes commonly grouped with the amidases, namely, hippuricase, and the enzymes decomposing histidine are omitted because they represent a mixture of enzymes, or are too poorly characterized at present to be included in this work. Allantoinase and allantoicase see p. 368ff.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Kolmen, S. N., M. M. Guest and R. D. Celander: Arch. Biochem. 85, 334 (1959).PubMedCrossRefGoogle Scholar
  2. 2.
    Sherry, S., A. P. Fletcher and N. Alkjaersig: Physiol. Rev. 39, 343 (1959).PubMedGoogle Scholar
  3. 3.
    Kaulla, K. N. v.: Chemistry of Thrombolysis: Human Fibrinolytic Enzymes. Springfield 1963.Google Scholar
  4. 4.
    Kaulla, K. N. v.: Kli. Wo. 1957, 667. Nature 184, 1320 (1959).Google Scholar
  5. 5.
    Fuchs, B.: H. 114, 301 (1921).Google Scholar
  6. 6.
    Greenbaum, A. L., and S. J. Folley: Biochem. J. 40, 46 (1946).PubMedGoogle Scholar
  7. 7.
    Clementi, A.: Atti R. Accad. Lincei, R. C. (5) 23, 612; 27, 299 (1914).Google Scholar
  8. 8.
    Krebs, H. A., u. K. Henseleit: H. 210, 33 (1932).Google Scholar
  9. 9.
    Greenberg, D. M.; in: Colowick-Kaplan, Meth. Enzymol. Vol. II, p. 386.Google Scholar
  10. 1.
    Bobbins, K. C, and J. Shields: Arch. Biochem. 62, 55 (1956).CrossRefGoogle Scholar
  11. 2.
    Schwimmer, S.: Nature 171, 443 (1953).CrossRefGoogle Scholar
  12. 3.
    Peterson, E. A., and H. A. Sober: Am. Soc. 78, 751, 756 (1956).Google Scholar
  13. 4.
    Boman, H. Gr., and L. E. Westlund: Arch. Biochem. 64, 217 (1956).PubMedCrossRefGoogle Scholar
  14. 5.
    Tiselius, A., S. Hjertén and Ö. Levin: Arch. Biochem. 65, 132 (1956).PubMedCrossRefGoogle Scholar
  15. 6.
    Greenberg, D. M., A. E. Bagot and O. A. Roholt Jr.: Arch. Biochem. 62, 446 (1956).PubMedCrossRefGoogle Scholar
  16. 7.
    Roholt Jr., O. A., and D. M. Greenberg: Arch. Biochem. 62, 454 (1956).PubMedCrossRefGoogle Scholar
  17. 8.
    Slyke, D. D. van, and R. M. Archibald: J. biol. Ch. 165, 293 (1946).Google Scholar
  18. 1.
    Folley, S. J., and A. L. Greenbatjm: Biochem. J. 43, 337 (1948).Google Scholar
  19. 2.
    Greenberg, D. M.; in: Colowick-Kaplan, Meth. Enzymol. Vol. II, p. 386.Google Scholar
  20. 3.
    Werner, A. E.: The Chemistry of Urea. p. 187. London 1923.Google Scholar
  21. 4.
    Commercial xanthydrol can be made suitable for use in the analysis by being completely reduced in the same manner.Google Scholar
  22. 1.
    Engel, M. G., and F. L. Engel: J. biol. Ch. 167, 535 (1946).Google Scholar
  23. 1.
    Slyke, D. D. van, and K. M. Archibald: J. biol. Ch. 165, 293 (1946).Google Scholar
  24. 2.
    Hunter, A., and C. E. Downs: J. biol. Ch. 155, 173 (1944).Google Scholar
  25. 3.
    Robbins, K. C, and J. Shields: Arch. Biochem. 62, 55 (1956).PubMedCrossRefGoogle Scholar
  26. 4.
    Folley, S. J., and A. L. Greenbaum: Biochem. J. 43, 337 (1948).Google Scholar
  27. 1.
    These consist of 1—hole rubber stoppers in which are inserted heavy walled glass capillary tubes of 0.5 to 1.0 mm bore.Google Scholar
  28. 2.
    Folley, S. J., and A. L. Greenbaum: Biochem. J. 43, 337 (1948).Google Scholar
  29. 3.
    Bobbins, K. C, and J. Shields: Arch. Biochem. 62, 55 (1956).CrossRefGoogle Scholar
  30. 1.
    Hunter, A., and C. E. Downs: J. biol. Ch. 155, 173 (1944).Google Scholar
  31. 2.
    Gilboe, D. D., and J. N. Williams Jr.: Proc. Soc. exp. Biol. Med. 91, 537 (1956).PubMedCrossRefGoogle Scholar
  32. 3.
    Rosenberg, H., A. H. Ennor and J. F. Morrison: Biochem. J. 63, 153 (1956).PubMedGoogle Scholar
  33. 4.
    Unpublished work.Google Scholar
  34. 1.
    Taylor, E. S., and E. F. Gale: Biochem. J. 39, 52 (1945).PubMedGoogle Scholar
  35. 2.
    Sumner, J. B.; in: Sumner-Myrbäck, Vol. 1/2, p. 873.Google Scholar
  36. 3.
    Sumner, J. B.: J. biol. Ch. 69, 435 (1926).Google Scholar
  37. 4.
    Sumner, J. B.; in: Colowick-Kaplan, Meth. Enzymol. Vol. II, p. 378.Google Scholar
  38. 5.
    Dounce, A. L.: J. biol. Ch. 140, 307 (1941).Google Scholar
  39. 6.
    Sumner, J. B., and V. A. Graham: Proc. Soc. exp. Biol. Med. 22, 504 (1925).CrossRefGoogle Scholar
  40. 1.
    Slyke, D. D. van, and R. M. Archibald: J. biol. Ch. 154, 623 (1944).Google Scholar
  41. 2.
    If temperatures other than 20° C are employed, corrections factors to adjust to the 20° C value are given by D. D. van Slyke and R. M. Archibald: J. biol. Ch. 154, 630 (1944).Google Scholar
  42. 3.
    Slyke, D. D. van, and G. E. Cullen: J. biol. Ch. 19, 211 (1914).Google Scholar
  43. 1.
    Zittle, C. A.; in: Sumner-Myrbäck, Vol. 1/2, p. 922.Google Scholar
  44. 2.
    Grassmann, W., u. W. Heyde: H. 183, 32 (1929).Google Scholar
  45. 1.
    Meister, A.: in; Colowick-Kaplan, Meth. Enzymol., Vol. II, p. 380.Google Scholar
  46. 2.
    2 Grassmann, W., u. O. Mayer: H. 214, 185 (1932/33).Google Scholar
  47. 3.
    Bray, H. G., S. P. James, B. E. Ryman and W. V. Thorpe: Biochem. J. 42, 274 (1948).Google Scholar
  48. 4.
    Bray, H. G., S. P. James, I. M. Raffan, B. E. Ryman and W. V. Thorpe: Biochem. J. 44, 618 (1949).Google Scholar
  49. 1.
    Meister, A.; in: Colowick-Kaplan, Meth. Enzymol., Vol. II, p. 380.Google Scholar
  50. 2.
    Hughes, D. E., and D. H. Williamson: Biochem. J. 51, 45 (1952).PubMedGoogle Scholar
  51. 3.
    Errera, M.: J. biol. Ch. 178, 483 (1949).Google Scholar
  52. 4.
    Otey, M. C, S. M. Birnbaum and J. P. G-reenstein: Arch. Biochem. 49, 245 (1954).PubMedCrossRefGoogle Scholar
  53. 5.
    Morton, R. R.: Nature 166, 1092 (1950).PubMedCrossRefGoogle Scholar
  54. 1.
    Meister, A.; in: Colo wick-Kaplan, Meth. EnzymoL, Bol. II, p. 380.Google Scholar
  55. 2.
    Meister, A., and S. V. Tice: J. biol. Ch. 187, 173 (1950).Google Scholar
  56. 3.
    Birnbaum, S. M.; in: Colowick-Kaplan, Meth. Enzymol., Vol. II, p. 397.Google Scholar
  57. 4.
    Seligson, D., and H. Seligson: Analyt. Chem., Washington 23, 1877 (1951).CrossRefGoogle Scholar
  58. 4a.
    Seligson, D., and H. Seligson: J. Lab. Clin. Med. 38, 324 (1951).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • David M. Greenberg
    • 1
  1. 1.Department of BiochemistryUniversity of California School of MedicineSan FeanciscoUSA

Personalised recommendations