Advertisement

Die Funktionen \( {\vartheta '_1}\left( 0 \right),\;{\vartheta _0}\left( 0 \right),\;{\vartheta _2}\left( 0 \right),\;{\vartheta _3}\left( 0 \right),\frac{{{{\vartheta '''}_1}\left( 0 \right)}}{{{{\vartheta '}_1}\left( 0 \right)}},,\;\frac{{{{\vartheta ''}_2}\left( 0 \right)}}{{{\vartheta _2}\left( 0 \right)}},\;\frac{{{{\vartheta ''}_3}\left( 0 \right)}}{{{\vartheta _3}\left( 0 \right)}},\;\frac{{{{\vartheta ''}_0}\left( 0 \right)}}{{{\vartheta _0}\left( 0 \right)}} \) nebst den Werten von \( q,\;{q^4},\;{q^{\tfrac{1}{4}}},\;{q^{\tfrac{9}{4}}},\;{q^{\tfrac{{25}}{4}}} \)

  • Keiichi Hayashi

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1930

Authors and Affiliations

  • Keiichi Hayashi
    • 1
  1. 1.Kaiserlichen Kyushu-UniversitätJapan

Personalised recommendations